Math, asked by siddhu9678, 1 year ago

if x=root3-1/root3+1,y=3+2root2/3-2root2 then find the value of x+y

Answers

Answered by DaIncredible
12
Using the identities :
 {(a  - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\  \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}   + 2ab \\  \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

Now,

x =   \frac{ \sqrt{3}   -  1}{ \sqrt{3} + 1 }  \\

On rationalizing the denominator we get,

x =  \frac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \times  \frac{ \sqrt{3} - 1 }{ \sqrt{3}  -  1 }  \\  \\ x =  \frac{ {( \sqrt{3} )}^{2} +  {(1)}^{2}   - 2( \sqrt{3} )(1)}{ {( \sqrt{3} )}^{2}  -  {(1)}^{2} }  \\  \\ x =  \frac{3 + 1 - 2 \sqrt{3} }{3 - 1}  \\  \\ x =  \frac{4 - 2 \sqrt{3} }{2}  \\  \\ x = 2  -   \sqrt{3}

y =  \frac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\

On rationalizing the denominator we get,

y =  \frac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\ y =  \frac{ {(3)}^{2}  +   {(2 \sqrt{2} )}^{2} + 2(3)(2 \sqrt{2} )}{ {(3)}^{2} -  {(2 \sqrt{2} )}^{2}  }   \\  \\ y =  \frac{9 + 8 + 12 \sqrt{2} }{9 - 8}  \\  \\ y = 17 + 12 \sqrt{2}

Now,

(2 -  \sqrt{3} ) + (17 + 12 \sqrt{2} ) \\  \\  = 2 -  \sqrt{3}  + 17 + 12 \sqrt{2}  \\  \\  =  -  \sqrt{3}  + 12 \sqrt{2}  + 19

nancyyy: Awesome ma'am :o
Similar questions