Math, asked by MEETVAGHASIYA, 1 year ago

if x=root3-1/root3+1,y=root3+1/root3-1,simplify

Answers

Answered by Bhavanavindamuri
14
HELLO DEAR USER!!!✌️✌️



HERE IS YOUR ANSWER GOES LIKE THIS ............



==========================================================================================


YOUR QUESTION:

if X=
3-1/3+1  Y=3+1/3-1,simplify

ANSWER:


X=(
3+1)2/3-1

=3+1+2
3/2

=4+2
3/2

=2(2+
3)/2

X=2+
3


now,

Y=
3-1/3+1

=
3-1/3+1.3-1/3-1

=(
3-1)2/3-1

=3+1-2
3/2

=4-2
3/2

=2(2-
3)/2

now,

=X
²+Y²+XY

=(2+
3)2+(2-3)2+(2+3)(2-3)

=4+3+
3+4+3-43+4-3

=7+7+1

=15

THEREFORE,the answer is 15 




=======================================================================================



❤️I HOPE THIS WILL HELP YOU❤️ 



HAVE A GREAT DAY AHEAD✌️✌️ 



^_^
Answered by dk6060805
7

Answer is 15

Step-by-step explanation:

Given, x = \frac {\sqrt {3} -1}{\sqrt {3} +1} and y = \frac {\sqrt {3} +1}{\sqrt {3} -1}

x = \frac {\sqrt {3} -1}{\sqrt {3} +1}

On factorizing we get:

x = \frac {\sqrt {3} -1}{\sqrt {3} +1}

x = \frac {(\sqrt {3} -1)^2}{(\sqrt {3})^2 - (1)^2}

x =\frac {3^2 + 1^2 -2\sqrt 3}{(\sqrt {3})^2 - (1)^2} (using (a-b)^2 = a^2 - 2ab + b^2)

x = \frac {3+1-2\sqrt 3}{3-1}

x = \frac {3+1-2\sqrt 3}{3-1}\\

x = \frac {4-2\sqrt 3}{2}\\

x = 2-\sqrt3

Now for y = \frac {\sqrt {3} +1}{\sqrt {3} -1}

On factorizing we get:

y = \frac {\sqrt {3} +1}{\sqrt {3} -1}

y = \frac {(\sqrt {3} +1)^2}{(\sqrt {3})^2 - (1)^2}

y = \frac {3^2 + 1^2 +2\sqrt 3}{(\sqrt {3})^2 - (1)^2}  (using (a+b)^2 = a^2 + 2ab + b^2)

y = \frac {3+1+2\sqrt3}{2}

y = \frac {4+2\sqrt 3}{2}

y = 2+\sqrt 3

Now, For x^2+ y^2 + xy, we have to put the values of x & y calculated above-

(2-\sqrt3)^2 + (2+\sqrt3)^2 + (2-\sqrt3)(2+\sqrt3)

= 4 + 3 - 4\sqrt 3 + 4 + 3 + 4\sqrt 3 + 4 - 3 using the algebraic identities - (using (a-b)^2 = a^2 - 2ab + b^2,  

(using (a+b)^2 = a^2 + 2ab + b^2) and (a+b)(a-b) = a^2 - b^2

= 14 + 1

= 15 Answer!

Similar questions