Math, asked by shushant12345, 1 year ago

if x = (root3 + root2)/(root3 - root2) and y = (root3 - root2)/(root3 + root2), find the value of (x + y)^2

Answers

Answered by BloomingBud
48
\mathbb{ SOLUTION <br />} :

Given,

x =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \\  \\  \\   \:  \:  \:  \: =  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \:  \:  \:  \:  \: ( \: by \:  \: rationalisation) \\  \\  \\

 \:  \:  \:  = \frac{ {( \sqrt{3} +  \sqrt{2}) }^{2} }{ {( \sqrt{3}) }^{2} -  {( \sqrt{2} )}^{2}  }   \:  \:  \: ( \therefore \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \:  \: ) \\  \\  \\   \:  \: =  \frac{ {( \sqrt{3}) }^{2}  +  {( \sqrt{2}) }^{2}  + 2 \times  \sqrt{3} \times  \sqrt{2}  }{3 - 2}   \:  \:  \:  \:  \: ( \therefore  {(a + b)}^{2} =  {a}^{2} + 2ab +  {b}^{2}  \: )  \: \\  \\  \\  \:  \:  =  \frac{3 + 2 + 2 \sqrt{6} }{1}  \\  \\  \\
 \:  \:  = 3 + 2 + 2 \sqrt{6}  \\  \\  \\  \therefore \: x \:  = 5 + 2 \sqrt{6}  \:  \:  \:  \:  \:  \:  \: ........(i) \\  \\  \\
Now,

y =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  =  \frac{1}{x}  =  \frac{1}{5 + 2 \sqrt{6} }  \:  \:  \: (from \:  \: eq. \: (i) \: ) \\  \\  \\  \:  \:  =  \frac{1}{5 + 2 \sqrt{6} }  \times  \frac{5 - 2 \sqrt{6} }{5 - 2 \sqrt{6} }  \:  \:  \:  \:  \: (by \:  \: rationalisation) \\  \\  \\  \:  \:  =  \frac{5 - 2 \sqrt{6} }{ {(5)}^{2} -  {(2 \sqrt{6}) }^{2}  }  \:  \:  \: ( \therefore \: (a - b)(a + b) =  {a}^{2}  -  {b}^{2}  \: ) \\  \\  \\  \:  \:  =  \frac{5 - 2 \sqrt{6} }{25 - 24}  \\  \\  \\ y =  \frac{5 - 2 \sqrt{6} }{1}  = 5 - 2 \sqrt{6}


Now,

x + y = 5  + 2 \sqrt{6}  + 5 - 2 \sqrt{6}  = 10 \\  \\  \\ on \:  \: squaring \:  \: both \:  \: sides \:  \\ we \:  \: get \\  \\  {(x + y)}^{2} =  {(10)}^{2}   = 100


arjunrathore1295: your answer is x+y=10
Answered by anonymous64
30
&lt;b&gt;Heya mate. (^_-). Solution below.
====================================

♦ x = (√3 + √2)/(√3 - √2)


→ Rationalising the denominator,


=> x = [(√3 + √2)/(√3 - √2)] × [(√3 + √2)/(√3 + √2)] ... [multiplying by the conjugate]


=> x = [(√3 + √2)(√3 + √2)]/[(√3 - √2)/(√3 + √2)]


• Using identity : (a - b)(a + b) = a² - b² in the denominator,


=> x = (√3 + √2)²/(√3)² - (√2)²


• Using identity : (a + b)² = a² + b² + 2ab in the numerator,


=> x = (3 + 2 + 2 × √3 × √2)/(3 - 2)

=> x = 5 + 2√6/1

=> x = 5 + 2√6


•°• x = 5 + 2√6 ... [equation i]




♦ y = (√3 - √2)/(√3 + √2)


→ Rationalising the denominator,


=> y = [(√3 - √2)/(√3 + √2)] × [(√3 - √2)/(√3 - √2)]

=> y = [(√3 - √2)(√3 - √2)]/[(√3 + √2)(√3 - √2)]


• Using identity : (a + b)(a - b) = a² - b² in the denominator,


=> y = (√3 - √2)²/(√3)² - (√2)²


• Using identity : (a - b)² = a² + b² - 2ab in the numerator,


=> y = (3 + 2 - 2 × √3 × √2)/3 - 2

=> y = 5 - 2√6/1

=> y = 5 - 2√6


•°• y = 5 - 2√6 ... [equation ii]



♦ Adding equations i and ii,

x + y = (5 + 2√6) + (5 - 2√6)

=> x + y = 5 + 2√6 + 5 - 2√6

=> x + y = 10 ... (2√6 and -2√6 get cancelled)


•°• x + y = 10... [equation iii]



♦ Now, squaring both sides in equation iii,

x + y = 10

=> (x + y)² = (10)²

=> (x + y)² = 100


•°• (x + y)² = 100
====================================

&lt;marquee&gt;Thank you.&lt;/marquee&gt;

anonymous64: :-D
Similar questions