if x = (root3 + root2)/(root3 - root2) and y = (root3 - root2)/(root3 + root2), find the value of (x + y)^2
Answers
Answered by
48
:
Given,
Now,
Now,
Given,
Now,
Now,
arjunrathore1295:
your answer is x+y=10
Answered by
30
====================================
♦ x = (√3 + √2)/(√3 - √2)
→ Rationalising the denominator,
=> x = [(√3 + √2)/(√3 - √2)] × [(√3 + √2)/(√3 + √2)] ... [multiplying by the conjugate]
=> x = [(√3 + √2)(√3 + √2)]/[(√3 - √2)/(√3 + √2)]
• Using identity : (a - b)(a + b) = a² - b² in the denominator,
=> x = (√3 + √2)²/(√3)² - (√2)²
• Using identity : (a + b)² = a² + b² + 2ab in the numerator,
=> x = (3 + 2 + 2 × √3 × √2)/(3 - 2)
=> x = 5 + 2√6/1
=> x = 5 + 2√6
•°• x = 5 + 2√6 ... [equation i]
♦ y = (√3 - √2)/(√3 + √2)
→ Rationalising the denominator,
=> y = [(√3 - √2)/(√3 + √2)] × [(√3 - √2)/(√3 - √2)]
=> y = [(√3 - √2)(√3 - √2)]/[(√3 + √2)(√3 - √2)]
• Using identity : (a + b)(a - b) = a² - b² in the denominator,
=> y = (√3 - √2)²/(√3)² - (√2)²
• Using identity : (a - b)² = a² + b² - 2ab in the numerator,
=> y = (3 + 2 - 2 × √3 × √2)/3 - 2
=> y = 5 - 2√6/1
=> y = 5 - 2√6
•°• y = 5 - 2√6 ... [equation ii]
♦ Adding equations i and ii,
x + y = (5 + 2√6) + (5 - 2√6)
=> x + y = 5 + 2√6 + 5 - 2√6
=> x + y = 10 ... (2√6 and -2√6 get cancelled)
•°• x + y = 10... [equation iii]
♦ Now, squaring both sides in equation iii,
x + y = 10
=> (x + y)² = (10)²
=> (x + y)² = 100
•°• (x + y)² = 100
====================================
Similar questions