If x=root3-root2/root3+root2 and y=root3+root2/root3-root2 find the vale of x square + y square+xy
Answers
Answered by
4
x = (√3 + √2) / (√3 - √2)
y = (√3 - √2) / (√3 + √2)
x^2 + y^2
= [(√3 + √2) / (√3 - √2)]^2 + [(√3 - √2) / (√3 + √2)]^2
= [(√3 + √2)^2 / (√3 - √2)^2] + [(√3 - √2)^2 / (√3 + √2)^2]
= [(3 + 2√6 + 4) / (3 - 2√6 + 4)] + [(3 - 2√6 + 4) / (3 + 2√6 + 4)]
= [(7 + 2√6) / (7 - 2√6)] + [(7 - 2√6) / (7 + 2√6)]
= [(7 + 2√6)^2 / (49 - 24)] + [(7 - 2√6)^2 / (49 - 24)] -- rationalizing the denominators
= [(49 + 28√6 + 24) / 50] + [(49 - 28√6 + 24) / 50]
= [(73 + 28√6) / 50] + [(73 - 28√6) / 50]
= (73 + 28√6 + 73 - 28√6) / 50
= 146/50
= 73/25
Answered by
0
Answer:
please see the attachment
Attachments:
Similar questions