Math, asked by ragini2882, 5 months ago

if x=root3+root2/root3-root2 find the value of x+1/x​

Answers

Answered by Anonymous
4

Solution:-

Given:-

 \sf \implies \: x =  \dfrac{ \sqrt{ 3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }

To Find :-

  \sf \implies \: value \: of \: x +  \dfrac{1}{x}

Now Put the value

 \sf \implies \:  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  +  \dfrac{1}{ \dfrac{ \sqrt{3 } +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} } }  \implies \:  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }   +  \dfrac{ \sqrt{3}   -   \sqrt{2} }{ \sqrt{3}   +  \sqrt{2} }

We get

 \sf \implies\dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }   +  \dfrac{ \sqrt{3}   -   \sqrt{2} }{ \sqrt{3}   +  \sqrt{2} }

Now Take Lcm

  \sf\implies  \:  \dfrac{( \sqrt{3} +  \sqrt{2})( \sqrt{3}  +  \sqrt{2}) + ( \sqrt{3}  -  \sqrt{2} )( \sqrt{3} -  \sqrt{2})}{( \sqrt{3}  +  \sqrt{2} )( \sqrt{3} -  \sqrt{2}) }

 \sf \implies \:  \dfrac{( \sqrt{3} +  \sqrt{2}) ^{2} + ( \sqrt{3}  -   \sqrt{2}) ^{2} }{( \sqrt{3} )^{2}  - ( \sqrt{2})^{2} }

 \sf \implies \:  \dfrac{( \sqrt{3} ) {}^{2}  + ( \sqrt{2})^{2} + 2 \times  \sqrt{3} \times  \sqrt{2}  +(\sqrt{3} ) {}^{2}  + ( \sqrt{2})^{2}  - 2 \times  \sqrt{3} \times  \sqrt{2} }{3 - 2}

We get

 \sf\implies \:  \dfrac{3 + 2 + 3 + 2}{1}

 \sf \implies \: 10

Answer is 10

Answered by tarracharan
1

Given:

➪ \tt{x =\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}

To find:

➪ \sf{Value\:of\:}\tt{x + \dfrac{1}{x}}

Solution:

⇒ \tt{x+\dfrac{1}{x}}

= \tt{\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{1}{\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}}

= \tt{\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} + \dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}

= \tt{\dfrac{(\sqrt{3}+\sqrt{2})²+(\sqrt{3}-\sqrt{2})²}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}}

= \tt{\dfrac{3+2+\cancel{2\sqrt{3} \sqrt{2}}+3+2-\cancel{2\sqrt{3} \sqrt{2}}}{(\sqrt{3})²-(\sqrt{2})²}}

= \tt{\dfrac{5+5}{3-2}} = \tt{\dfrac{10}{1}}= \tt{\red{10}}

Extra information:

\sf{•\:(a+b)²=a²+b²+2ab}

\sf{•\:(a-b)²=a²+b²-2ab}

\sf{•\:(a+b)(a-b)=a²-b²}

Similar questions