Math, asked by Thowfeeq6162, 10 months ago

If x =root3-root2 then find the value of x-1/xwhole square

Answers

Answered by umiko28
0

  \huge\mathbb\red{SOLUTION }

 \bf\ \: x  =  \sqrt{3}   -  \sqrt{2}  \\  \\  \bf\  \implies  \frac{1}{x} =  \frac{1}{ \sqrt{3} -  \sqrt{2}  }  \\  \\  \huge\mathbb{ \pink{TO \:  FIND  \leadsto }} \\  \\  \bf\boxed{ \green {(x -  \frac{1}{x} )}^{2}  =? }\\  \\  \bf\  \implies{{( \sqrt{3} -  \sqrt{2}   - \frac{1}{ \sqrt{3}  -  \sqrt{2} } })^{2}} \\  \\ \bf\  \implies \frac{ {( \sqrt{3} -  \sqrt{2}  )}^{2} - 1 }{ \sqrt{3}  -  \sqrt{2} }  \\  \\ \bf\ \implies   \frac{3  -   2 \sqrt{6}  + 2 - 1}{ \sqrt{3}  -  \sqrt{2} } \\  \\ \bf\  \implies \frac{ - 2 \sqrt{6} }{ \sqrt{3}  -  \sqrt{2} }  \\  \\ \bf\  \implies \frac{ - 2 \sqrt{6} ( \sqrt{3}  +  \sqrt{2} )}{( \sqrt{3}  -  \sqrt{2} )( \sqrt{3} +  \sqrt{2} ) }  \\  \\ \bf\  \implies \frac{ - 6 \sqrt{2}  - 4 \sqrt{3} }{ ({ \sqrt{3} )}^{2}  -  {( \sqrt{2}) }^{2} }  \\  \\ \bf\boxed{  \implies \frac{  - 2(3 \sqrt{2}  + 2 \sqrt{3}) }{1} }

Similar questions