Math, asked by superswordsman9376, 10 months ago

If x=root5-2/root5+2 and y=root5+2/root5-2 then find the value of x²+y²-xy

Answers

Answered by jitendra420156
1

x^2+y^2-xy =\frac{97}{5} -\frac{24}{\sqrt{5} }

Step-by-step explanation:

Given,

x= \sqrt{5}-\frac{2}{ \sqrt{5}} +2   and   y= \sqrt{5}+\frac{2}{ \sqrt{5}} -2

x-y= \sqrt{5}-\frac{2}{ \sqrt{5} }+2 -( \sqrt{5}+\frac{2}{ \sqrt{5} }-2)

\Leftrightarrow x-y= \sqrt{5}-\frac{2}{ \sqrt{5}} +2 - \sqrt{5}-\frac{2}{ \sqrt{5}} +2

\Leftrightarrow x-y= -\frac{4}{ \sqrt{5}} +4

Therefore,

xy=( \sqrt{5}-\frac{2}{ \sqrt{5}} +2)( \sqrt{5}+\frac{2}{ \sqrt{5}} -2)

\Leftrightarrow xy = (\sqrt{5})^2-(\frac{2}{\sqrt{5} } -2)^2

\Leftrightarrow xy =5-(\frac{4}{{5} } -\frac{8}{\sqrt{5}}+4)

\Leftrightarrow xy =1-\frac{4}{{5} } +\frac{8}{\sqrt{5}}

Therefore

x^2+y^2-xy

=x^2+y^2-2xy+xy

=(x-y)^2+xy

=(-\frac{4}{\sqrt{5} } +4)^2+1-\frac{4}{{5} } +\frac{8}{\sqrt{5}}

=\frac{16}{5} -\frac{32}{\sqrt{5}} +16+1-\frac{4}{5} +\frac{8}{\sqrt{5} }

=\frac{12}{5} -\frac{24}{\sqrt{5} } +17

=\frac{97}{5} -\frac{24}{\sqrt{5} }

Similar questions