Math, asked by Ravigenius, 1 year ago

If x=root5+2,then prove that x sq. +1/x sq.=18​

Answers

Answered by LovelyG
10

Solution:

Given that ;

x = √5 + 2

Now, find the value of 1/x.

 \sf \implies  \frac{1}{x}  =  \frac{1}{ \sqrt{5}  + 2}  \\  \\ \sf \implies  \frac{1}{x}  =  \frac{1}{ \sqrt{5} + 2 }  \times  \frac{ \sqrt{5} - 2 }{ \sqrt{5} - 2 }  \\  \\ \sf \implies  \frac{1}{x}  =  \frac{ \sqrt{5} - 2 }{ {( \sqrt{5}) }^{2}  -  {(2)}^{2} }  \\  \\ \sf \implies  \frac{1}{ x }  =  \frac{ \sqrt{5}  - 2}{5 - 4}  \\  \\ \sf \implies  \frac{1}{x}  =  \sqrt{5}  - 2

So, find x + (1/x).

\sf \implies x +  \frac{1}{x}  =  \sqrt{5}  + 2 +  \sqrt{5}  - 2 \\  \\ \sf \implies x +  \frac{1}{x}  = 2 \sqrt{5}

On squaring both sides ;

\sf \implies (x +  \frac{1}{x} ) {}^{2}  = (2 \sqrt{5} ) {}^{2}  \\  \\ \sf \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 20 \\  \\ \sf \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 20 - 2 \\  \\ \boxed{ \red{ \bf  \therefore \:  {x}^{2} +  \frac{1}{ {x}^{2} } = 18}}

Hence, it is proved.

Answered by Anonymous
12

Answer:

\large \text{$(x^2+\dfrac{1}{x^2})=18 \ (Proved)$}

Step-by-step explanation:

Given :

\large \text{$x=\sqrt5+2$}

We have to prove

\large \text{$x^2+(\dfrac{1}{x})^2=18 $}

First take a reciprocal in both of given

\large \text{$x=\sqrt5+2$}\\\\\\\large \text{$\dfrac{1}{x} =\dfrac{1}{\sqrt5+2}$}\\\\\\\large \text{Now rationalize the denominator}\\\\\\\large \text{$\dfrac{1}{x} =\dfrac{1}{\sqrt5+2}\times\dfrac{\sqrt5-2}{\sqrt5-2}$}\\\\\\\large \text{Using identity $(a+b)(a-b)=a^2-b^2 \ here \ we \ get$}\\\\\\\large \text{$\dfrac{1}{x}=\dfrac{\sqrt5-2}{5-4}$}\\\\\\\large \text{$\dfrac{1}{x}=\sqrt5-2$}

\large \text{Now subtract $(x-\dfrac{1}{x}) \ we \ get$}

\large \text{$x-\dfrac{1}{x}=\sqrt5+2-(\sqrt5-2)$}\\\\\\\large \text{$x-\dfrac{1}{x}=4$}\\\\\\\large \text{Now squaring on both side we get}\\\\\\\large \text{$(x-\dfrac{1}{x})2=(4)^2$}\\\\\\\large \text{$(x^2+\dfrac{1}{x^2}-2)=16$}\\\\\\\large \text{$(x^2+\dfrac{1}{x^2})=16+2$}\\\\\\\large \text{$(x^2+\dfrac{1}{x^2})=18$}

Hence proved.

Similar questions