If x=root7+root6 ÷root7-root6 and y=root7-root6÷root7+root6 find x+y
Answers
Answer:
26
Step-by-step explanation:
x+y=7½+6½/7½-6½ +7½-6½/7½+6½
=[(7½+6½)²+(7½-6½)]/7-6
=(7+6+2.7½.6½+7+6-2.7½.6½)/1
=7+6+7+6
x+y=26
I think the answer is correct
Pls mark as brainliest answer
x=√(7) + √(6) ÷ √(7) - √(6)
y=√(7) - √(6) ÷ √(7) + √(6)
∴ x=√(7) + √(6) ÷ √(7) - √(6)
(Rationalize the denominator )
⇒ (√7 + √6) ÷ (√(7) - √(6) ) × (√(7) - √(6) ) ÷ (√(7) - √(6) )
⇒ (√7 + √6) ² ÷ √(7)² - √(6)²
⇒ { (√7)² + 2 × √7 × √6 + (√6)² } ÷ 7 - 6
[∵ square cancle the squareroot so, (√7)² = 7 and (√6)² = 6]
⇒ { 7 + 2√42 + 6 } ÷ 1
⇒ 7 + 6 + 2√42
[∴ value of 1 in divide is nothing like 4 ÷ 1 = 4 ]
⇒ 13 + √84
∴ x = 13 + √84
Then, y = √(7) - √(6) ÷ √(7) + √(6)
(Rationalize the denominator )
⇒ (√7 - √6) ÷ (√7 + √6 ) × (√7 - √6 ) ÷ (√7 - √6 )
⇒ ( √7 - √6 )² ÷ (√7)² - (√6)²
[∵ square cancle the squareroot so, (√7)² = 7 and (√6)² = 6 ]
⇒ { (√7)² - 2 × √7 × √6 + (√6)² } ÷ 7 - 6
⇒ { 7 - 2√42 + 6 } ÷ 1
[∴ value of 1 in divide is nothing like 4 ÷ 1 = 4 ]
⇒ { 7 + 6 - √84}
⇒ 13 - √84
∴ y = 13 - √84
∴ x + y = ( 13 + √84 ) + (13 - √84)
[∵x + y = ( 13 + √84 ) + (13 - √84) ] is Answer