If x=route5+2, then prove that x square 2 +1/x square 2=18.
Answers
Answered by
3
x = √5 + 2
Now,
x^2 = (√5+2)^2 = 5+4+4√5 = 9+4√5.
And,
1/x^2 = 1/9+4√5
= 1/9+4√5 * 9-4√5/9-4√5
= 9-4√5 / (9)^2-(4√5)^2
= 9-4√5 / 1 = 9-4√5.
Now,
x^2 + 1/x^2 = 9+4√5 + 9-4√5 = 18.
Now,
x^2 = (√5+2)^2 = 5+4+4√5 = 9+4√5.
And,
1/x^2 = 1/9+4√5
= 1/9+4√5 * 9-4√5/9-4√5
= 9-4√5 / (9)^2-(4√5)^2
= 9-4√5 / 1 = 9-4√5.
Now,
x^2 + 1/x^2 = 9+4√5 + 9-4√5 = 18.
Answered by
1
Answer :
Given that,
x = √5 + 2
So, 1/x
= 1/(√5 + 2)
= (√5 - 2)/{(√5 + 2) (√5 - 2)}
= (√5 - 2)/(5 - 4)
= √5 - 2
Now, x + 1/x
= √5 + 2 + √5 - 2
= 2√5
So, x² + 1/x²
= (x + 1/x)² - 2 (x) (1/x)
= (2√5)² - 2
= 20 - 2
= 18
#MarkAsBrainliest
Given that,
x = √5 + 2
So, 1/x
= 1/(√5 + 2)
= (√5 - 2)/{(√5 + 2) (√5 - 2)}
= (√5 - 2)/(5 - 4)
= √5 - 2
Now, x + 1/x
= √5 + 2 + √5 - 2
= 2√5
So, x² + 1/x²
= (x + 1/x)² - 2 (x) (1/x)
= (2√5)² - 2
= 20 - 2
= 18
#MarkAsBrainliest
Similar questions