If x = rsinαcosβ , y = rsinαcosβ and z = rcosα, prove that x² + y² + z² = r²
Answers
Answered by
18
Answer:
x = rsinAcosC
y= rsinAsinC
z= rcosA
squaring and adding all,
x² +y²+z² =( rsinAcosC)²+(rsinAsinC)+(rcosA)²
=r²[ sin²Acos²C + sin²Asin²C + cos²A]
=r² [sin²A(cos²C + sin²C) + cos²A] ∵cos²α+sin²α =1
=r²[sin²A+cos²A]
=r²
Answered by
39
➝ Given :-
⇾x = rsinα.cosβ
⇾y = rsinα.cosβ
⇾z = rcos α
➝ To prove :-
→ x²+y²+z² = r²
➝ Solution :-
⟹x² + y² + z²
⟹ r² sin²α cos²β +r²sin²α sin²β +r²cos²α
⟹ r² sin²α (cos²β + sin²β)+r²cos²α
⟹ r² sin²α +r² cos²α [: cos²β +sin²β = 1]
⟹ r² (sin²α + cos²α) = r [: sin²α +cos²α= 1].
Hence, (x² + y² + z²) = r²
Hence proved.
Similar questions