Math, asked by kostwal88, 9 months ago

if x=sec(theta) +tan(theta),then x+1/x=

Answers

Answered by VarshaSharma608
2

x =  \sec  \alpha  +  \tan \alpha  \\ x =  \frac{1 + sin \alpha }{ \cos\alpha  }  \\  \frac{1}{x}  =   \frac{cos \alpha }{(1 + sin \alpha )}  \\ x +  \frac{1}{x}  =  \frac{(1 + sin \alpha }{ \cos \alpha  }  +  \frac{cos \alpha }{(1 +  \sin \alpha  }  \\  =  \frac{(1 +  {sin \alpha }^{2})2 +  {cos}^{2}   \alpha }{(1 + sin \alpha )cos \alpha }  \\  \frac{1 +  {sin}^{2}  \alpha  + 2sin \alpha  +  {cos}^{2}  \alpha }{(1 + sin \alpha )cos \alpha }  \:  \:  \:  \: ( {sin}^{2}  +  {cos}^{2}  = 1) \\  =  \frac{2 + 2sin \alpha }{(1 + sin \alpha )cos \alpha }  \\  =  \frac{2(1 + sin \alpha )}{(1 + sin \alpha )cos \alpha  } \\  \frac{2}{cos \alpha  \\ }  = 2sec \alpha  \: ans

Similar questions