If x= secA + sinA and y= secA - sinA prove that:(2/x+y)2^ + (x-y/2)2^
Answers
Answered by
9
(2/x+y)² + (x-y/2)²
= (2/secA + sinA + secA - sinA)² + (secA + sinA - [secA - sinA]/2)²
= (2/2secA)² + (secA + sinA - [secA - sinA]/2)²
= 1/sec²A + (secA + sinA - secA + sinA/2)²
= 1/sec²A + (2sinA/2)²
= cos²A + sin²A
= 1
= (2/secA + sinA + secA - sinA)² + (secA + sinA - [secA - sinA]/2)²
= (2/2secA)² + (secA + sinA - [secA - sinA]/2)²
= 1/sec²A + (secA + sinA - secA + sinA/2)²
= 1/sec²A + (2sinA/2)²
= cos²A + sin²A
= 1
Similar questions