Math, asked by nilasi2003, 9 months ago


if x=seca+tana and y=coseca+cota then prove that dy/dx=-(1+y^2)/(1+x^2)
solve this with steps

Answers

Answered by shadowsabers03
28

Given,

\longrightarrow x=\sec a+\tan a

Differentiating wrt a,

\longrightarrow \dfrac{dx}{da}=\dfrac{d}{da}(\sec a+\tan a)

\longrightarrow \dfrac{dx}{da}=\sec a\tan a+\sec^2 a

\longrightarrow \dfrac{dx}{da}=\sec a(\sec a+\tan a)

\longrightarrow \dfrac{dx}{da}=x\sec a\quad\quad\dots(1)

Given,

\longrightarrow y=\csc a+\cot a

Differentiating wrt a,

\longrightarrow \dfrac{dy}{da}=\dfrac{d}{da}(\csc a+\cot a)

\longrightarrow \dfrac{dy}{da}=-\csc a\cot a-\csc^2 a

\longrightarrow \dfrac{dy}{da}=-\csc a(\csc a+\cot a)

\longrightarrow \dfrac{dy}{da}=-y\csc a\quad\quad\dots(2)

Dividing (2) by (1),

\longrightarrow \dfrac{dy}{da}\div\dfrac{dx}{da}=-\dfrac{y\csc a}{x\sec a}

\longrightarrow \dfrac{dy}{dx}=-\dfrac{y\csc a}{x\sec a}\quad\quad\dots(3)

We see that,

\longrightarrow x^2=(\sec a+\tan a)^2

\longrightarrow x^2=\sec^2 a+\tan^2 a+2\sec a\tan a

Adding 1,

\longrightarrow 1+x^2=\sec^2 a+\tan^2 a+1+2\sec a\tan a

Since \sec^2a-\tan^2a=1,

\longrightarrow 1+x^2=\sec^2 a+\tan^2 a+\sec^2a-\tan^2a+2\sec a\tan a

\longrightarrow 1+x^2=2\sec^2 a+2\sec a\tan a

\longrightarrow 1+x^2=2\sec a(\sec a+\tan a)

\longrightarrow 1+x^2=2x\sec a

\longrightarrow x\sec a=\dfrac{1+x^2}{2}\quad\quad\dots(4)

Similarly,

\longrightarrow y^2=(\csc a+\cot a)^2

\longrightarrow y^2=\csc^2 a+\cot^2 a+2\csc a\cot a

Adding 1,

\longrightarrow 1+y^2=\csc^2 a+\cot^2 a+1+2\csc a\cot a

Since \csc^2a-\cot^2a=1,

\longrightarrow 1+y^2=\csc^2 a+\cot^2 a+\csc^2a-\cot^2a+2\csc a\cot a

\longrightarrow 1+y^2=2\csc^2 a+2\csc a\cot a

\longrightarrow 1+y^2=2\csc a(\csc a+\cot a)

\longrightarrow 1+y^2=2y\csc a

\longrightarrow y\csc a=\dfrac{1+y^2}{2}\quad\quad\dots(5)

Putting (4) and (5) in (3) we get,

\longrightarrow \dfrac{dy}{dx}=-\dfrac{\left(\dfrac{1+y^2}{2}\right)}{\left(\dfrac{1+x^2}{2}\right)}

\longrightarrow\underline{\underline{\dfrac{dy}{dx}=-\dfrac{1+y^2}{1+x^2}}}

Hence Proved!

Answered by Anonymous
0

Answer:

plz Mark it as brainliest answer plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzz

Similar questions