Math, asked by roypintoo2819, 18 days ago

If x=secx-cosx, y=sec^nx-cos^nx then [x^2 +4 /y^2+4]× (dy/dx)^2=

Answers

Answered by mathdude500
13

Appropriate Question

If

\rm \: x = sect \:  -  \: cost

and

\rm \: y =  {sec}^{n}t -  {cos}^{n}t

\rm \: \: then \:  \: \dfrac{ {x}^{2}  + 4}{ {y}^{2} + 4}  {\bigg(\dfrac{dy}{dx}\bigg) }^{2}  =  -  -  -  -  -  -

\large\underline{\sf{Solution-}}

Given that,

\rm \: x = sect \:  -  \: cost

So, Consider

\rm \:  {x}^{2} + 4

\rm \:  =  \:  {sec}^{2}t +  {cos}^{2}t - 2 \times sect \times cost + 4

\rm \:  =  \:  {sec}^{2}t +  {cos}^{2}t -2 + 4

\rm \:  =  \:  {sec}^{2}t +  {cos}^{2}t  + 2

\rm \:  =  \:  {sec}^{2}t +  {cos}^{2}t  + 2 \times sect \times cost

\rm \:  =  \:  {(sect + cost)}^{2}

\rm\implies \:\boxed{\tt{  \rm \: {x}^{2} + 4   =  \:  {(sect + cost)}^{2} }} -  -  -  - (1) \\

Also, Given that

\rm \: y =  {sec}^{n}t -  {cos}^{n}t

Now, Consider

\rm \:  {y}^{2} + 4

\rm \:  =  \:  {( {sec}^{n}t -  {cos}^{n}t)}^{2}  + 4

\rm \:  =  \:  {sec}^{2n}t +  {cos}^{2n}t - 2 \times  {sec}^{n}t  \times  {cos}^{n}t  + 4

\rm \:  =  \:  {sec}^{2n}t +  {cos}^{2n}t - 2  + 4

\rm \:  =  \:  {sec}^{2n}t +  {cos}^{2n}t  +  2

\rm \:  =  \:  {( {sec}^{n}t +  {cos}^{n}t)}^{2}

\rm\implies \:\boxed{\tt{  \rm \:  {y}^{2} + 4 =  \:  {( {sec}^{n}t +  {cos}^{n}t)}^{2}  \: }}  -  -  - (2)\\

Now, Consider

\rm \: x = sect \:  -  \: cost

On differentiating both sides w. r. t. t, we get

\rm \: \dfrac{dx}{dt} = sect \: tant + sint

can be further rewritten as

\rm \: \dfrac{dx}{dt} = sect \: tant + \dfrac{sint}{cost} \times cost

\rm \: \dfrac{dx}{dt} = sect \: tant + tant \times cost

\rm\implies \:\rm \: \dfrac{dx}{dt} = tant \: (sect + cost) -  -  -  - (3)

Now, Consider

\rm \: y =  {sec}^{n}t -  {cos}^{n}t

On differentiating both sides w. r. t. t, we get

\rm \: \dfrac{dy}{dt} =  n{sec}^{n - 1}t(sect \: tant) -  n{cos}^{n - 1}t( - sint)

\rm \: \dfrac{dy}{dt} =  n{sec}^{n}t( \: tant) + n{cos}^{n - 1}t(sint)

can be rewritten as

\rm \: \dfrac{dy}{dt} =  n{sec}^{n}t( \: tant) + n{cos}^{n - 1}t \times \dfrac{sint}{cost}  \times cost

\rm \: \dfrac{dy}{dt} =  n{sec}^{n}t( \: tant) + n{cos}^{n}t \: tant

\rm\implies \:\rm \: \dfrac{dy}{dt} =  ntant \: ({sec}^{n}t + {cos}^{n}t) -  -  - (4)

Now,

\rm \: \dfrac{dy}{dx} = \dfrac{dy}{dt} \div \dfrac{dx}{dt}

\rm \:  =  \: \dfrac{n \: tant \: ( {sec}^{n}t \:  +  \:  {cos}^{n}t) }{tant(sect \:  +  \: cost)}

\rm \:  =  \: \dfrac{n\: ( {sec}^{n}t \:  +  \:  {cos}^{n}t) }{sect \:  +  \: cost}

So,

\rm\implies \: {\bigg(\dfrac{dy}{dx}\bigg) }^{2} = \dfrac{ {n}^{2}  {( {sec}^{n}t  \: +  \:  {cos}^{n}t) }^{2} }{ {(sect \:  +  \: cost)}^{2} }

So, using equation (1) and (2), we get

\rm \:  {\bigg(\dfrac{dy}{dx}\bigg) }^{2}  = \dfrac{ {n}^{2} ( {y}^{2}  + 4)}{ {x}^{2}  + 4}

\rm\implies \:\dfrac{ {x}^{2}  + 4}{ {y}^{2} + 4}  {\bigg(\dfrac{dy}{dx}\bigg) }^{2}  =  {n}^{2}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{ \dfrac{d}{dx}secx = secx \: tanx \: }} \\

\boxed{\tt{ \dfrac{d}{dx}cosx \:  =  \:  -  \: sinx \: }} \\

\boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \\

\boxed{\tt{  {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}   - 2xy \: }} \\

\boxed{\tt{  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2} +  2xy \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by XxitzZBrainlyStarxX
7

Question:-

 \sf  If \: x = sec \theta - cos \theta,y = sec {}^{n}  \theta - cos {}^{n}  \theta, \\  \sf then \bigg( \frac{x {}^{2} + 4 }{y {}^{2}  + 4}  \bigg) \bigg( \frac{dy}{dx}  \bigg) {}^{2}  =

Solution:-

 \sf \large \frac{dy}{dx}  =  \frac{dy}{ \frac{d \theta}{dx} }  =  \frac{n(sec {}^{n}  \theta \: tan \theta \:  + cos {}^{n - 1} \theta \: sin \theta }{sec \theta \: tan \theta \:  + sin \theta}

 \sf \large =  \frac{n \: tan \theta(sec {}^{n} \theta + cos {}^{n}   \theta)}{tan \theta(sec \theta + cos \theta)}

 \sf  \large( \frac{dy}{dx} )  {}^{2}  =  \frac{n {}^{2} (sec {}^{n} \theta + cos {}^{n}  \theta) {}^{2}  }{(sec \theta + cos \theta) {}^{2} }

 \sf \large \frac{n {}^{2} ((sec {}^{n}  \theta - cos {}^{n} \theta) {}^{2}  + 4) }{(sec \theta - cos \theta) {}^{2} + 4 }  =  \frac{n {}^{2}(y {}^{2} + 4)  }{(x {}^{2} + 4) }

Answer:-

{ \boxed{ \sf \large \red{\bigg( \frac{x {}^{2} + 4 }{y {}^{2}  + 4}  \bigg) \bigg( \frac{dy}{dx}  \bigg) {}^{2}  = n {}^{2} .}}}

Hope you have satisfied.

Similar questions