Math, asked by yashvi15, 1 year ago

if x sin ^3 theta +y cos^3 theta =sin theta cos theta and x sin theta =y cos theta ,then show that x^2 + y^2 =1

Answers

Answered by Anonymous
9

Answer:

 

\large \text{$x^2+y^2=1$ \ proved}

Step-by-step explanation:

Given :

\large \text{$x \ sin^3\theta+y \ cos^3\theta=sin \theta. cos \theta$ and $x \ sin \theta=y \ cos\theta$}

We have prove

\large \text{$ x^2+y^2 =1$}

We know that

\large \text{$tan=\dfrac{sin}{cos} $}

So we have

\large \text{ $x \ sin \theta=y \ cos\theta$}}\\\\\\\large \text{$tan \theta=\dfrac{y}{x} \ ...( i)$}

We also have

\large \text{$x \ sin^3\theta+y \ cos^3\theta=sin \theta. cos \theta$}

Now divide it by cos^3 \theta we get

\large \text{$x \ \dfrac{sin^3\theta}{cos^3 \theta} +y \ \dfrac{cos^3\theta}{cos^3 \theta} =\dfrac{sin \theta. cos \theta}{cos^3 \theta} $}\\\\\\\large \text{$x \ tan^3 \theta + y = \dfrac{tan \theta}{cos \theta} $}

Now put value of tan \theta=\dfrac{y}{x}

\large \text{$x \ (\dfrac{y}{x})^{3} \theta + y = \dfrac{y\sqrt{x^2+y^2} }{x\times x}$}}\\\\\\\large \text{Here we directly write $cos \theta=\sqrt{1+tan^2 \theta} $}\\\\\\\large \text{$y^3+x^2y=y\sqrt{x^2+y^2}$}\\\\\\\large \text{$x^2+y^2=\sqrt{x^2+y^2}$}\\\\\\\large \text{$1=\sqrt{x^2+y^2}$}\\\\\\\large \text{$x^2+y^2=1$}

One step it write directly you can see in picture.

Hence proved.

Attachments:
Answered by Anonymous
6

Answer:

Step-by-step explanation:

xsin³∅ + ycos³∅ = sin∅. cos∅

x.sin³∅ + cos²∅.(ycos∅) = sin∅.cos∅

use xsin∅= ycos∅ in above

xsin³∅ + cos²∅.xsin∅ = sin∅.cos∅

xsin∅( sin²∅ + cos²∅) = sin∅.cos∅

xsin∅ = sin∅.cos∅

x = cos∅

so, y = sin∅

now we know,

sin²∅ + cos²∅ = 1

put sin∅ = y

cos∅ = x

hence, x² + y² = 1

Hope thse helps u

Similar questions