Math, asked by anshunishuns, 1 year ago

If x sin^3 theta + y cos^3 theta = sin theta cos theta and x sin theta = y cos theta ; prove that: x^2 + y^2 = 1

Answers

Answered by MaheswariS
4

\textbf{Given:}

x\,sin\,\theta=y\,cos\,\theta

\implies\,\frac{sin\,\theta}{cos\,\theta}=\frac{y}{x}

\text{Then, }sin\,\theta=k\,y\;\;\&\;\;cos\,\theta=k\,x

\text{Using, }\bf\,sin^2\theta+cos^2\theta=1

\implies\,k^2y^2+k^2x^2=1

\implies\,k^2(y^2+x^2)=1

\implies\bf\,k=\frac{1}{\sqrt{x^2+y^2}}

\text{Also, }x\,sin^3\theta+y\,cos^3 \theta=sin\theta \,cos\theta

\implies\,x\,(k\,y)^3+y\,(k\,x)^3 =(k\,y)(k\,x)

\implies\,x\,k^3y^3+y\,k^3x^3 =k^2x\,y

\implies\,k^3(x\,y^3+y\,x^3) =k^2x\,y

\implies\,k\,x\,y(y^2+x^2) =x\,y

\implies\,k(y^2+x^2) =1

\implies\frac{1}{\sqrt{x^2+y^2}}(y^2+x^2) =1

\implies\sqrt{x^2+y^2}=1

\text{Squaring on both sides, we get}

\implies\bf\,x^2+y^2=1

Answered by Nikhil9971
3

Answer:

Explanation in attachment.

Attachments:
Similar questions