If x sin^3 theta+y cos^3 theta=Sin theta x cos theta and x sin theta =y cos theta,then show that x^2+y^2=1
Answers
Answered by
1374
xsin³∅ + ycos³∅ = sin∅. cos∅
x.sin³∅ + cos²∅.(ycos∅) = sin∅.cos∅
use xsin∅= ycos∅ in above
xsin³∅ + cos²∅.xsin∅ = sin∅.cos∅
xsin∅( sin²∅ + cos²∅) = sin∅.cos∅
xsin∅ = sin∅.cos∅
x = cos∅
so, y = sin∅
now we know,
sin²∅ + cos²∅ = 1
put sin∅ = y
cos∅ = x
hence, x² + y² = 1
x.sin³∅ + cos²∅.(ycos∅) = sin∅.cos∅
use xsin∅= ycos∅ in above
xsin³∅ + cos²∅.xsin∅ = sin∅.cos∅
xsin∅( sin²∅ + cos²∅) = sin∅.cos∅
xsin∅ = sin∅.cos∅
x = cos∅
so, y = sin∅
now we know,
sin²∅ + cos²∅ = 1
put sin∅ = y
cos∅ = x
hence, x² + y² = 1
Answered by
63
Answer:
xsin³∅ + ycos³∅ = sin∅. cos∅
x.sin³∅ + cos²∅.(ycos∅) = sin∅.cos∅
use xsin∅= ycos∅ in above
xsin³∅ + cos²∅.xsin∅ = sin∅.cos∅
xsin∅( sin²∅ + cos²∅) = sin∅.cos∅
xsin∅ = sin∅.cos∅
x = cos∅
so, y = sin∅
now we know,
sin²∅ + cos²∅ = 1
put sin∅ = y
cos∅ = x
hence, x² + y² = 1
Step-by-step explanation:
PLS MARK ME AS THE BRAINLIEST!
Similar questions