Math, asked by shuvangi, 1 year ago

If x.sin^3A+y.cos^3A=sinA.cosA
And x.sinA- y.cosA=0
Then prove x^2 +y^2=1

Answers

Answered by Mathexpert
398
Given xSinA – yCosA = 0
⇒ x.SinA = y CosA     ........(1)

Consider 
xSin^3A+yCos^3A = SinACosA

 xSin^3A+yCosACos^2A = SinACosA

 xSin^3A+ xSinACos^2A = SinACosA     {From eq 1}

xSin^3A+ xSinA(1-Sin^2A) = SinACosA

xSin^3A+ xSinA-xSin^3A = SinACosA

xSinA = SinACosA

x = CosA          ......(2)

Substitute this value in the eq (1)
 
We get y = SinA

so, x^2 + y^2 = Cos^2A + Sin^2A = 1 

Mathexpert: Hope the solution helps you.
Answered by bhupendra253
69

here is your answer mate

Attachments:
Similar questions