Math, asked by Caoiuvj, 1 year ago

if x = sin^3t / √cost , y = cos^3t / √cost
then prove that dy/dx = - cot 3t ​

Answers

Answered by Swarnimkumar22
69

\bold{\huge{\underline{Question}}}

 \bf \: if \tt \: {x \:  = \frac{ {sin}^{3} t}{ \sqrt{cos \: 2t} }   \:  \:  \: or \:  \:  \: y = \:  \frac{ {cos}^{3}t }{ \sqrt{cos \: 2t} }  }  \\  \\ \bf \: then \: prove \: that \tt \:  \frac{dy}{dx}  =  - cot \: 3t

\bold{\huge{\underline{Answer- }}}

\bold{\huge{\underline{\underline{Used\:Formulas}}}}

 \boxed{1 . \sf  \frac{d}{dx}( \frac{p}{q} ) =  \frac{q  \times \frac{dp}{dx}- p  \times  \frac{dq}{dx}}{ {q}^{2} }  } \\  \boxed{2 . \sf \: 2sin \: a  \times \: cosb = sin(a + b) + sin(a - b)} \\  \boxed{3 . \sf \: sin3a = 3sina +  {4sin}^{3} a} \\  \boxed{4 . \sf \frac{cos  \: \theta}{sin \:  \theta} = cot \theta } \\  \boxed{5 . \sf \frac{d}{dx}sinx = cosx } \\  \boxed{ 6 .\sf \:  \frac{d}{dx}cosx =  - sinx }

\bold{\huge{\underline{Solution-}}}

we need to find dy/dx = -cot3t

 \tt \:  \frac{dy}{dx}  =  \frac{ (\frac{dy}{dt} )}{ (\frac{dx}{dt}) }   \\

\implies \tt \:  \frac{ \frac{d}{dt} \frac{ {cos}^{3}t }{ \sqrt{cos2 \: t} }  }{ \frac{d}{dt} \frac{ {sin}^{3}t }{ \sqrt{cos2 \: t} }  }  \\

 \implies \large \tt \:  \:  \frac{ \{ \:  \frac{ \sqrt{cos2 \: t} +  \frac{d}{dt}(cos \: t) {}^{3}  -  {cos}^{3} t   \times  \frac{d}{dt}(cos \: 2t) {}^{ \frac{1}{2} }   }{( \sqrt{cos \: 2t}) {}^{2}  }  \}}{  \{ \: \frac{ \sqrt{cos \: 2t} \times  \frac{d}{dt} (sin \: t) {}^{3}   -  {sin}^{3} t  \times \frac{d}{dt}(cos \: 2t) {}^{ \frac{1}{2} }  }{( \sqrt{cos2t}) {}^{2}  }  \}}  \\

 \implies \large \tt \:  \{ \:  \frac{ \sqrt{cos \: 2t}  \times 3(cos \: t) {}^{3 - 1}  \times ( - sin \: t) - ( {cos}^{3}t) \times  \frac{1}{2}(cos \: 2t) {}^{ \frac{1}{2} - 1 } \times   \frac{d}{dt}cos \: 2t  }{ \sqrt{cos \: 2t}  \times 3(sin \: t) {}^{3 - 1} \times  cos \: t -  {sin}^{3}t \:  \times  \frac{1}{2} ( \: cos2 \: t) {}^{ \frac{1}{2}  - 1} \times  \frac{d}{dt}cos2 \: t   }  \} \\

 \implies  \large \tt \:  \frac{  {- 3 \sqrt{cos \: 2t}   \times {cos}^{2}t  \times sint \:  -  \frac{ {cos}^{3} t}{2 \sqrt{cos \: 2t} }  \times ( - sin \: 2t) \times 2 \times 1 }{}}{ {3 \sqrt{cos \: 2t}  \times sin {}^{2} t \times cost -  \frac{ {sin}^{3}t }{2 \sqrt{cos \: 2t} } \times ( - sin2t)  \times 2 \times 1  }{} }  \\

 \implies \large \tt \:  \frac{cos {}^{2}t \{ \:  \frac{ - 3cos \: 2t  \times sint + cos \: t \:  \times  \: sin \: 2t}{ \sqrt{cos \: 2t} }  \} }{ {sin}^{2}t \{ \:  \frac{3 \: cos \: 2t \times cost + sin \: t \times sin2t}{ \sqrt{cos 2t\: } }  \} }  \\

 \implies \large \tt \: \frac{ {cos}^{2}t }{sin {}^{2}t }  \{ \:  \frac{ - 3 \times 2sint  \times cos2t + 2sin \: 2t  \times cost}{3 \times 2 \: cos2t \: cost \:  + 2 \: sin \: t \: sin2t}  \} \\

 \implies \large \tt \:  \frac{ {cos}^{2}t }{ {sin}^{2}t } \:  \frac{[ - 3 \{ \: sin(t + 2t) + sin(t - 2t) \} +  \{sin(2t + t) +sin (2t - t) \}]}{ \: [3 \times  \{ \: cos(2t + t) + cos(2t - t) \} +  \{ \: cos(t - 2t) - cos(t + 2t) \}]}  \\

 \implies \large \tt \:  \frac{ {cos}^{2} t}{ {sin}^{2}t }  \frac{ \:[ - 3sin \: 3t \:  - 3sin( - t) + sin \: 3t + sint] }{ \:[3cos \: 3t \:  + 3 \: cost + cos( - t) - cos \:  3t]}  \\

\implies \large \tt \:  \frac{ {cos}^{2} t}{ {sin}^{2} t}  [\frac{ - 2 \: sin3t \:  + 4sin \: t}{2cos \: 3t + 4 \: cos \: t} ] \\

 \implies \large \tt \:  \frac{ {cos}^{2}t }{ {sin}^{2} t} [  \frac{ - 2 \times  \{ \: 3sin \: t - 4sin {}^{3}t \} + 4 \: sint }{2 \times  \{ \: 4cos {}^{3}t \:  - 3cos \: t \} \:  + 4 \: cost } ] \\

\implies \large \tt \:  \frac{ {cos}^{2}t }{ {sin}^{2}t } [ \frac{ - 2 \: sint + 8 {sin}^{3}t }{8 {cos}^{3}t - 2cost } ] \\

\implies \large \tt \:  \frac{2 {cos}^{2}t \times sin \: t \{ - 1 + 4 {sin}^{2}t \}  }{2 {sin}^{2}t \: cost \{4 {cos}^{2}t - 1 \}  }\\

\implies \large \tt \:  \frac{cos \: t}{sin \: t} [  \frac{ - 1 + 4(1 -  {cos}^{2}t) }{4(1 -  {sin}^{2}t) - 1 } ] \\

 \implies \large \tt \:  \frac{cos \: t}{sin \: t}  \frac{ [3 - 4 {cos}^{2}t ] }{[3 - 4 {sin}^{2}t ]}  \\

 \implies \large \tt \:  \frac{ - [4 {cos}^{3}t - 3cost ]}{[3sin \: t - 4 {sin}^{3}t ]}  \\

 \implies \large \tt \:  \frac{ - cos3t}{sin3t}   \\  \\  \implies \large \tt \:  \frac{dy}{dt}  =  - cot3t


Anonymous: Amazing answer!
gowcharan12: really amazing answer
Anonymous: super
abhi178: implies is used to indicate when both sides expressions. here in place of implies you should equal symbol. after that answer is nice .keep it
Haezel: Very good
Swarnimkumar22: Thanks @AnimeGirl , @gowcharan12,khushi5991
Swarnimkumar22: Thank you @abhi178 sir , Satanic
Swarnimkumar22: Thank you @Haezel mam :-)
Similar questions