Math, asked by armanjot4, 17 days ago

If x sin A + y cos A = Z then x cos A - y sin A is equal to -???​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{x\;sinA+y\;cosA=z}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{x\;cosA-y\;sinA}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{x\;sinA+y\;cosA=z}

\textsf{Squaring on bothsides, we get}

\mathsf{(x\;sinA+y\;cosA)^2=z^2}

\mathsf{x^2sin^2A+y^2cos^2A+2\;xy\;sinA\;cosA=z^2}

\mathsf{x^2(1-cos^2A)+y^2(1-sin^2A)+2\;xy\;sinA\;cosA=z^2}

\mathsf{x^2-x^2\;cos^2A+y^2-y^2sin^2A+2\;xy\;sinA\;cosA=z^2}

\mathsf{-x^2\;cos^2A-y^2sin^2A+2\;xy\;sinA\;cosA=z^2-x^2-y^2}

\textsf{This can be written as,}

\mathsf{x^2\;cos^2A+y^2sin^2A-2\;xy\;sinA\;cosA=-z^2+x^2+y^2}

\mathsf{(x\,cosA-y\,sinA)^2=x^2+y^2-z^2}

\textsf{Taking square root, we get}

\boxed{\mathsf{x\,cosA-y\,sinA=\sqrt{x^2+y^2-z^2}}}

\underline{\textbf{Find more:}}

X/acosθ+y/bsinθ=1 and x/asinθ-y/bcosθ=1, prove that x²/a²+y²/b²=2.

https://brainly.in/question/15922910

Similar questions