Math, asked by PalakKharbanda, 1 month ago

If x = sin t, y = sin pt, prove that (1 – x²)d²y/dx²-x dy/dx +p²y = 0.
I want the ans urgently plz don't spam..​

Answers

Answered by 1234566777899998755
1

Answer:

x=sin t y=sin pt dx/dt=cost=√(1-sin²t)=√(1-x²) dy/dt=pcos pt=p√(1-sin²pt)=p√(1-y²) dy/dx=p√(1-x²)/√(1-y²) ------eq1 again differentiate wrt x: (1-x²)d²y/dx² =p{ √(1-x²) × -2y/2√(1-y²) - √(1-y²)×-2x/2√(1-x²)} (1-x²)d²y/dx²=-py√(1-x²)/√(1-y²) + xp√(1-y²)/√(1-x²)} from eq1: (1-x²)d²y/dx²=-p²y + xdy/dx (1-x²)d²y/dx² - xdy/dx + p²y -------provedRead more on Sarthaks.com - https://www.sarthaks.com/201216/if-x-sin-t-and-y-sin-pt-then-prove-that-1-x-2-d-2y-dx-2-xdy-dx-p-2y-0

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given

\rm :\longmapsto\:x = sint

and

\rm :\longmapsto\:y = sinpt

Consider,

\rm :\longmapsto\:x = sint

can be rewritten as

\rm :\longmapsto\:t =  {sin}^{ - 1}x

and

\rm :\longmapsto\:y = sinpt

can be rewritten as

\rm :\longmapsto\:pt =  {sin}^{ - 1}y

On substituting the value of 't', we get

\rm :\longmapsto\:p \:  {sin}^{ - 1}x =  {sin}^{ - 1}y

On differentiating both sides w. r. t x, we get

\rm :\longmapsto\:\dfrac{d}{dx}p \:  {sin}^{ - 1}x = \dfrac{d}{dx} {sin}^{ - 1}y

\rm :\longmapsto\:p \: \dfrac{d}{dx} \:  {sin}^{ - 1}x = \dfrac{d}{dx} {sin}^{ - 1}y

We know that,

\underbrace{ \boxed{ \bf \: \dfrac{d}{dx} {sin}^{ - 1}x =  \frac{1}{ \sqrt{1 -  {x}^{2} } }}}

So, on using this identity, we get

\rm :\longmapsto\:p \times \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  = \dfrac{1}{ \sqrt{1 -  {y}^{2} } }\dfrac{dy}{dx}

\rm :\longmapsto\: \sqrt{1 -  {x}^{2} }\dfrac{dy}{dx} = p \sqrt{1 -  {y}^{2} }

On squaring both sides, we get

\rm :\longmapsto\: ({1 - x}^{2}) {\bigg(\dfrac{dy}{dx}\bigg) }^{2}  =  {p}^{2} (1 -  {y}^{2})

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}({1 - x}^{2}) {\bigg(\dfrac{dy}{dx}\bigg) }^{2}  =  \dfrac{d}{dx}{p}^{2} (1 -  {y}^{2})

We know,

\underbrace{ \boxed{ \bf \: \dfrac{d}{dx}uv =u\dfrac{d}{dx}v  + \dfrac{d}{dx}u}}

and

\underbrace{ \boxed{ \bf \: \dfrac{d}{dx}kf(x) = k\dfrac{d}{dx}f(x)}}

So, on using these Identities we get

\rm :\longmapsto\: {(1 - x}^{2})\dfrac{d}{dx} \bigg(\dfrac{dy}{dx} \bigg)^{2}  + \bigg(\dfrac{dy}{dx} \bigg)^{2}\dfrac{d}{dx}(1 -  {x}^{2} )  =   {p}^{2}\dfrac{d}{dx}(1 -  {y}^{2})

\rm :\longmapsto\: {(1 - x}^{2})2\dfrac{dy}{dx}\dfrac{ {d}^{2} y}{d {x}^{2} } + \bigg(\dfrac{dy}{dx} \bigg)^{2}(0 - 2x)  =  - {p}^{2}2y\dfrac{dy}{dx}

\rm :\longmapsto\: {(1 - x}^{2})2\dfrac{dy}{dx}\dfrac{ {d}^{2} y}{d {x}^{2} }  - 2x \bigg(\dfrac{dy}{dx} \bigg)^{2} =  - {p}^{2}2y\dfrac{dy}{dx}

On cancelation the common terms, we get

\rm :\longmapsto\: {(1 - x}^{2})\dfrac{ {d}^{2} y}{d {x}^{2} }  - x \dfrac{dy}{dx} =  - {p}^{2}y

\rm :\longmapsto\: {(1 - x}^{2})\dfrac{ {d}^{2} y}{d {x}^{2} }  - x \dfrac{dy}{dx}  + {p}^{2}y = 0

Hence, Proved

Additional Information :-

\boxed{ \bf \: \dfrac{d}{dx}x = 1}

\boxed{ \bf \: \dfrac{d}{dx}k= 0}

\boxed{ \bf \: \dfrac{d}{dx}logx=  \frac{1}{x} }

\boxed{ \bf \: \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} } }

\boxed{ \bf \: \dfrac{d}{dx}sinx= cosx}

\boxed{ \bf \: \dfrac{d}{dx}cosx=  -  \: sinx}

\boxed{ \bf \: \dfrac{d}{dx}cosecx=  -  \: cosecx \: cotx}

\boxed{ \bf \: \dfrac{d}{dx}secx=  \:secx \: tanx}

Similar questions