Math, asked by muskan65740, 4 months ago

If x sin theta and y = b tan theta then prove a²/x² -b² /y² = 1

Answers

Answered by Intelligentcat
4

Solution :

  • x = a sin ϑ
  • y = b tan ϑ

LHS -

:\implies\sf{ sin \theta = \dfrac{x}{a}}\\ \\

As we know ,

:\implies\sf{ Cosec \theta = \dfrac{1}{sin \theta}}\\ \\

:\implies\sf{ Cosec \theta = 1 \div \dfrac{x}{a}}\\ \\

:\implies\sf{ Cosec \theta = \dfrac{a}{x}}\\ \\ ...(1)

RHS -

:\implies\sf{ tan \theta = \dfrac{y}{a}}\\ \\

:\implies\sf{ Cot \theta = \dfrac{1}{tan \theta}}\\ \\

:\implies\sf{ Cot \theta = 1 \div \dfrac{y}{b}}\\ \\

:\implies\sf{ Cot \theta = \dfrac{b}{y}}\\ \\ ...(2)

Now, As from our knowledge :

Cosec² ϑ - cot² ϑ = 1 ...(3)

Putting up the value of equation (1) and (2) in the equation (3) respectively.

:\implies\sf{ \dfrac{y}{a} +\dfrac{y}{a} = 1}\\ \\

:\implies\sf{\bigg(\dfrac{a}{x}\bigg)^{2} - \bigg( \dfrac{b}{y}\bigg)^{2} = 1}\\ \\

:\implies\sf{\dfrac{a^{2}}{x^{2}} - \dfrac{b^{2}}{y^{2}} = 1}\\ \\ \\

Hence , Proved !!

Similar questions