Math, asked by asmitrajora, 1 month ago

If x sinα + y cosα = p and x cosα – y sinα = q, then (x2 – p2) + (y2 – q2) is

Answers

Answered by prathamesh299
0

Let the line xcosα+ysinα=p touches the curve at point P(x1,y1)

The equation of tangent at P(x1,y1)

a2xx1−b2yy1=1 ...(1)

Here both the equation represent same line 

Now the equation xcosα+ysinα=p

or αxcosα+ypsinα=1....(2)

Now coefficient of line (1) and (2) are same 

∴a2x1=pcosα   and  b2−y1=psinα

or,  x1=pa2cosα   and   y1=p−b2sinα

PLS MARK BRAINLIEST

&

♥️♥️♥️♥️♥️⭐⭐⭐⭐⭐

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:xsin\alpha  + ycos\alpha  = p -  -  - (1)

and

\rm :\longmapsto\:xcos\alpha   -  ysin\alpha  = q -  -  - (2)

Now, Consider

\red{\rm :\longmapsto\: {p}^{2}+{q}^{2}}

On substituting the values of p and q, we get

\rm \:  =  \:  {(xsin\alpha  + ycos\alpha )}^{2} +  {(xcos\alpha  - ysin\alpha )}^{2}

\rm \:  =  \:  {x}^{2} {sin}^{2}\alpha  +  {y}^{2} {cos}^{2}\alpha  + 2xysin\alpha  \: cos\alpha  +  \\  \rm \:  {x}^{2} {cos}^{2}\alpha  +  {y}^{2} {sin}^{2}\alpha  - 2xy \: sin\alpha  \: cos\alpha

\rm \:  =  \:  {x}^{2} {sin}^{2}\alpha  +  {y}^{2} {cos}^{2}\alpha   + {x}^{2} {cos}^{2}\alpha  +  {y}^{2} {sin}^{2}\alpha

\rm \:  =  \:  {x}^{2}( {sin}^{2}\alpha  +  {cos}^{2}\alpha ) +  {y}^{2}( {sin}^{2}\alpha  +  {cos}^{2}\alpha )

\rm \:  =  \:  {x}^{2} +  {y}^{2}

\rm \implies\: {p}^{2} +  {q}^{2} =  {x}^{2}  +  {y}^{2}

\rm \implies\: {x}^{2} +  {y}^{2} - {p}^{2}   -  {q}^{2}  = 0

\bf \implies\: ({x}^{2} - {p}^{2}) + ({y}^{2}- {q}^{2})= 0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used :-

\boxed{ \tt{ \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy \: }}

\boxed{ \tt{ \:  {(x -  y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy \: }}

\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions