Math, asked by Anonymous, 1 year ago

If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ – y cos θ = 0, then prove that x2 + y2 = 1, (where, sin θ ≠ 0 and cos θ ≠ 0).

Answers

Answered by NightHawk
13
Solutions

x sin θ - y cos θ = 0, (Given) 

⇒ x sin θ = y cos θ 

⇒ y cos θ = x sin θ

Now dividing both sides by cos θ we get, 

y = x ∙ (sin θ/cos θ) 

Again, x sin3 θ + y cos3 θ = sin θ cos θ 

⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ [Since, y = x ∙ (sin θ/cos θ)] 

⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, [since, cos θ ≠ 0] 

⇒ x sin θ (1) = sin θ cos θ,[since, sin2 θ + cos2 θ = 0] 

⇒ x sin θ = sin θ cos θ

Now dividing both sides by sin θ we get, 

⇒ x = cos θ, [since, sin θ ≠ 0] 

Therefore, y = x ∙ (sin θ/cos θ) 

⇒ y = cos θ ∙ (sin θ/cos θ), [Putting x = cos θ] 

⇒ y = sin θ 

Now, x2 + y

= cos2 θ + sin2 θ 

= 1. 

Therefore, x2 + y2 = 1.


                                                  

Answered by InfinityToucher8
5
Given that,

x sin θ - y cos θ = 0,

⇒ x sin θ = y cos θ 

⇒ y cos θ = x sin θ

 Dividing both sides by cos θ, 

y = x ∙ (sin θ/cos θ) 

Now, x sin3 θ + y cos3 θ = sin θ cos θ 

⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ (∵ y = x ∙ (sin θ/cos θ))

⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, (∵ cos θ ≠ 0)

⇒ x sin θ (1) = sin θ cos θ,(∵ sin2 θ + cos2 θ = 0)

⇒ x sin θ = sin θ cos θ

 Dividing both sides by sin θ, 

⇒ x = cos θ, (∵ sin θ ≠ 0)

∴y = x ∙ (sin θ/cos θ) 

⇒ y = cos θ ∙ (sin θ/cos θ), (∵x = cos θ) 

⇒ y = sin θ 

Also, x2 + y2 

= cos2 θ + sin2 θ 

= 1
 
∴ x2 + y2 = 1.
Similar questions