If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ – y cos θ = 0, then prove that x2 + y2 = 1, (where, sin θ ≠ 0 and cos θ ≠ 0).
Answers
Answered by
13
Solutions
x sin θ - y cos θ = 0, (Given)
⇒ x sin θ = y cos θ
⇒ y cos θ = x sin θ
Now dividing both sides by cos θ we get,
y = x ∙ (sin θ/cos θ)
Again, x sin3 θ + y cos3 θ = sin θ cos θ
⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ [Since, y = x ∙ (sin θ/cos θ)]
⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, [since, cos θ ≠ 0]
⇒ x sin θ (1) = sin θ cos θ,[since, sin2 θ + cos2 θ = 0]
⇒ x sin θ = sin θ cos θ
Now dividing both sides by sin θ we get,
⇒ x = cos θ, [since, sin θ ≠ 0]
Therefore, y = x ∙ (sin θ/cos θ)
⇒ y = cos θ ∙ (sin θ/cos θ), [Putting x = cos θ]
⇒ y = sin θ
Now, x2 + y2
= cos2 θ + sin2 θ
= 1.
Therefore, x2 + y2 = 1.
x sin θ - y cos θ = 0, (Given)
⇒ x sin θ = y cos θ
⇒ y cos θ = x sin θ
Now dividing both sides by cos θ we get,
y = x ∙ (sin θ/cos θ)
Again, x sin3 θ + y cos3 θ = sin θ cos θ
⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ [Since, y = x ∙ (sin θ/cos θ)]
⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, [since, cos θ ≠ 0]
⇒ x sin θ (1) = sin θ cos θ,[since, sin2 θ + cos2 θ = 0]
⇒ x sin θ = sin θ cos θ
Now dividing both sides by sin θ we get,
⇒ x = cos θ, [since, sin θ ≠ 0]
Therefore, y = x ∙ (sin θ/cos θ)
⇒ y = cos θ ∙ (sin θ/cos θ), [Putting x = cos θ]
⇒ y = sin θ
Now, x2 + y2
= cos2 θ + sin2 θ
= 1.
Therefore, x2 + y2 = 1.
Answered by
5
Given that,
x sin θ - y cos θ = 0,
⇒ x sin θ = y cos θ
⇒ y cos θ = x sin θ
Dividing both sides by cos θ,
y = x ∙ (sin θ/cos θ)
Now, x sin3 θ + y cos3 θ = sin θ cos θ
⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ (∵ y = x ∙ (sin θ/cos θ))
⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, (∵ cos θ ≠ 0)
⇒ x sin θ (1) = sin θ cos θ,(∵ sin2 θ + cos2 θ = 0)
⇒ x sin θ = sin θ cos θ
Dividing both sides by sin θ,
⇒ x = cos θ, (∵ sin θ ≠ 0)
∴y = x ∙ (sin θ/cos θ)
⇒ y = cos θ ∙ (sin θ/cos θ), (∵x = cos θ)
⇒ y = sin θ
Also, x2 + y2
= cos2 θ + sin2 θ
= 1
∴ x2 + y2 = 1.
x sin θ - y cos θ = 0,
⇒ x sin θ = y cos θ
⇒ y cos θ = x sin θ
Dividing both sides by cos θ,
y = x ∙ (sin θ/cos θ)
Now, x sin3 θ + y cos3 θ = sin θ cos θ
⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ (∵ y = x ∙ (sin θ/cos θ))
⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, (∵ cos θ ≠ 0)
⇒ x sin θ (1) = sin θ cos θ,(∵ sin2 θ + cos2 θ = 0)
⇒ x sin θ = sin θ cos θ
Dividing both sides by sin θ,
⇒ x = cos θ, (∵ sin θ ≠ 0)
∴y = x ∙ (sin θ/cos θ)
⇒ y = cos θ ∙ (sin θ/cos θ), (∵x = cos θ)
⇒ y = sin θ
Also, x2 + y2
= cos2 θ + sin2 θ
= 1
∴ x2 + y2 = 1.
Similar questions