If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ – y cos θ = 0, then prove that x2 + y2 = 1, (where, sin θ ≠ 0 and cos θ ≠ 0).
Please show work
Answers
Answered by
20
Solutions
x sin θ - y cos θ = 0, (Given)
⇒ x sin θ = y cos θ
⇒ y cos θ = x sin θ
Now dividing both sides by cos θ we get,
y = x ∙ (sin θ/cos θ)
Again, x sin3 θ + y cos3 θ = sin θ cos θ
⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ [Since, y = x ∙ (sin θ/cos θ)]
⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, [since, cos θ ≠ 0]
⇒ x sin θ (1) = sin θ cos θ,[since, sin2 θ + cos2 θ = 0]
⇒ x sin θ = sin θ cos θ
Now dividing both sides by sin θ we get,
⇒ x = cos θ, [since, sin θ ≠ 0]
Therefore, y = x ∙ (sin θ/cos θ)
⇒ y = cos θ ∙ (sin θ/cos θ), [Putting x = cos θ]
⇒ y = sin θ
Now, x2 + y2
= cos2 θ + sin2 θ
= 1.
Therefore, x2 + y2 = 1.
x sin θ - y cos θ = 0, (Given)
⇒ x sin θ = y cos θ
⇒ y cos θ = x sin θ
Now dividing both sides by cos θ we get,
y = x ∙ (sin θ/cos θ)
Again, x sin3 θ + y cos3 θ = sin θ cos θ
⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ [Since, y = x ∙ (sin θ/cos θ)]
⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, [since, cos θ ≠ 0]
⇒ x sin θ (1) = sin θ cos θ,[since, sin2 θ + cos2 θ = 0]
⇒ x sin θ = sin θ cos θ
Now dividing both sides by sin θ we get,
⇒ x = cos θ, [since, sin θ ≠ 0]
Therefore, y = x ∙ (sin θ/cos θ)
⇒ y = cos θ ∙ (sin θ/cos θ), [Putting x = cos θ]
⇒ y = sin θ
Now, x2 + y2
= cos2 θ + sin2 θ
= 1.
Therefore, x2 + y2 = 1.
Answered by
10
Answer:
• Given : x sin³ θ + y cos³ θ = sin θ cos θ
⇒ (x sin θ) sin² θ + (y cos θ) cos² θ = sin θ cos θ
⇒ (x sin θ) sin² θ + (x sin θ) cos² θ = sin θ cos θ (∵ y cos θ = x sin θ)
⇒ x sin θ(sin² θ + cos² θ) = sin θ cos θ
⇒ x sin θ = sin θ cos θ
⇒ x = cos θ ….(1)
• Again : x sin θ = y cos θ
⇒ cos θ sin θ = y cos θ
⇒ y = sin θ ….(2)
• Squaring and adding (1) and (2) :
↠ x² + y² = cos² θ + sin² θ
↠ x² + y² = 1 (∴ sin² θ + cos² θ = 1)
Similar questions