Math, asked by AL2006, 1 year ago

If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ – y cos θ = 0, then prove that x2 + y2 = 1, (where, sin θ ≠ 0 and cos θ ≠ 0).
Please show work

Answers

Answered by Warzone
20
Solutions

x sin θ - y cos θ = 0, (Given) 

⇒ x sin θ = y cos θ 

⇒ y cos θ = x sin θ

Now dividing both sides by cos θ we get, 

y = x ∙ (sin θ/cos θ) 

Again, x sin3 θ + y cos3 θ = sin θ cos θ 

⇒ x sin3 θ + x ∙ (sin θ /cos θ) ∙ cos3 θ = sin θ cos θ [Since, y = x ∙ (sin θ/cos θ)] 

⇒ x sin θ ( sin2 θ + cos2 θ) = sin θ cos θ, [since, cos θ ≠ 0] 

⇒ x sin θ (1) = sin θ cos θ,[since, sin2 θ + cos2 θ = 0] 

⇒ x sin θ = sin θ cos θ

Now dividing both sides by sin θ we get, 

⇒ x = cos θ, [since, sin θ ≠ 0] 

Therefore, y = x ∙ (sin θ/cos θ) 

⇒ y = cos θ ∙ (sin θ/cos θ), [Putting x = cos θ] 

⇒ y = sin θ 

Now, x2 + y2 

= cos2 θ + sin2 θ 

= 1. 

Therefore, x2 + y2 = 1.
Answered by Anonymous
10

Answer:

Given : x sin³ θ + y cos³ θ = sin θ cos θ

⇒ (x sin θ) sin² θ + (y cos θ) cos² θ = sin θ cos θ

⇒ (x sin θ) sin² θ + (x sin θ) cos² θ = sin θ cos θ (∵ y cos θ = x sin θ)

⇒ x sin θ(sin² θ + cos² θ) = sin θ cos θ

⇒ x sin θ = sin θ cos θ

⇒ x = cos θ ….(1)

Again : x sin θ = y cos θ

⇒ cos θ sin θ = y cos θ

⇒ y = sin θ ….(2)

Squaring and adding (1) and (2) :

↠ x² + y² = cos² θ + sin² θ

+ = 1 (∴ sin² θ + cos² θ = 1)

Similar questions