If x sin3|+ y cos3|=sin|cos| and xsin|=ycos|, prove x2+y2=1.
Answers
x sin^3 € + y cos ^3 € = sin € cos €
Since, Given, x sin€ = y cos €
x sin € ( sin^2 €) + y cos € ( cos^2 € ) = sin€ cos €
y cos € ( sin^2 € ) + y cos € ( cos^2 € = sin€ cos€
y cos€ ( sin^2 € + cos^2 €) = sin € cos €
Cos € will cancel out from both sides, and by identity, sin^2 € + cos^2 € = 1
y = sin € --> ( i )
x sin € = y cos €
x sin € = sin€ cos € [ y = sin € ]
x = cos € --> ( ii )
Squaring and adding equations ( i ) and ( ii ),
x^2 + y^2 = sin^2 € + cos^2 €
If x sin3|+ y cos3|=sin|cos| and xsin|=ycos|, prove x2+y2=1.
Answer:
Answer:
Here is ur answer dear:-
=> xsin³theta + ycos³theta= sintheta×costheta.
=> x.sin³theta + cos²theta.(ycostheta) = sintheta.costheta.
• [use xsintheta= ycostheta in above]
=> xsin³theta+ cos²theta× xsintheta= sintheta×costheta.
=> xsintheta( sin²theta + cos²theta) = sintheta×costheta.
=> xsintheta = sintheta×costheta.
=> x = costheta.
=> s o, y = sintheta.