Math, asked by saranya170204, 1 year ago

If x sin³A + y cos³A = sinA × cosA and x sinA = y cosA, prove that x² + y² = 1

Answers

Answered by Anonymous
7

Step-by-step explanation:

I hope this helps u # saranya

Attachments:
Answered by ShuchiRecites
4

Solution

→ x sin³A + y cos³A = sinA cosA

→ x sinA (sin²A) + y cosA (cos²A) = sinA cosA

Given: x sinA = y cosA

→ x sinA (sin²A) + x sin A (cos²A) = sinA cosA

→ x sinA(sin²A + cos²A) = sinA cosA

We know: sin²A + cos²A = 1

→ x sinA = sinA cosA

→ x = cosA

By substituting values we get

→ x sinA = y cosA

→ cosA sinA = y cosA

→ sinA = y

→ cos²A + sin²A = 1 [Identity]

→ x² + y² = 1

Hence Proved

Similar questions