Math, asked by Anonymous, 4 months ago

If x sin³theta + y cos³theta = sin theta cos theta and x sin theta = y cos theta , prove that x² + y² = 1.


Don't spam ❌
Spam answer will be reported!!

Answers

Answered by ItzBeautyBabe
1

→ xsin³∅ + ycos³∅ = sin∅.cos∅

→x.sin³∅ + cos²∅.(ycos∅)

 = sin∅.cos∅

use xsin∅= ycos∅ in above,

→ xsin³∅ + cos²∅.xsin∅

= sin∅.cos∅

→ xsin∅( sin²∅ + cos²∅)

= sin∅.cos∅

→ xsin∅ = sin∅.cos∅

→ x = cos∅

so,

→ y = sin∅

now we know,

→ sin²∅ + cos²∅ = 1

put,

→ sin∅ = y

→ cos∅ = x

hence,

→x² + y² = 1

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf \: Given - \begin{cases} &\sf{x \: sin \theta \:  = y \: cos \theta} \\ &\sf{x {sin}^{3}\theta \: + y {cos}^{?}\theta \: = sin\theta \:cos\theta \:  } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: prove - \begin{cases} &\sf{ {x}^{2}  +  {y}^{2} = 1 }  \end{cases}\end{gathered}\end{gathered}

Identity used

 (1). \: \boxed{ \green{ \tt \:  {sin}^{2} \theta \: +  {cos}^{2} \theta \: = 1}}

\large\underline\purple{\bold{Solution :-  }}

Given that

\rm :\implies \boxed{ \blue{ \bf\:xsin\theta \: = ycos\theta }}\: -  -  - (1)

Also,

\rm :\implies\:x {sin}^{3} \theta \: + y {cos}^{3} \theta \: = sin\theta \:cos\theta \:

\rm :\implies\:xsin\theta \: \times  {sin}^{2} \theta \: + y {cos}^{ 3} \theta \: = sin\theta \:cos\theta \:

\rm :\implies\:ycos\theta \: \times  {sin}^{2} \theta \: + y {cos}^{3} \theta \: = sin\theta \:cos\theta \:

\rm :\implies\:y \:  \: \cancel{cos\theta \:}( {sin}^{2} \theta \: +  {cos}^{2} \theta \:) = sin\theta \: \cancel{cos\theta \:}

\rm :\implies\: \boxed{ \pink{ \bf \: y \: \tt\: =  \: sin\theta \: }} -  -  - (2)

On substituting equation (2) in equation (1), we get

\rm :\implies\:x \:  \: \cancel{sin\theta \: }= \cancel{sin\theta} \:cos\theta \:

\rm :\implies\: \boxed{ \pink{ \bf \: x \: =  \tt \: cos\theta \:}} -  -  - (3)

Now,

Squaring equation (2) and (3) and add, we get

\rm :\implies\: {x}^{2}  +  {y}^{2}  =  {sin}^{2}\theta \: \:  +   {cos}^{2} \theta \:

\rm :\implies\: \boxed{ \green{ \bf \:  {x}^{2}  +  {y}^{2}  = 1}}

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

  • sin θ = Opposite Side/Hypotenuse
  • cos θ = Adjacent Side/Hypotenuse
  • tan θ = Opposite Side/Adjacent Side
  • sec θ = Hypotenuse/Adjacent Side
  • cosec θ = Hypotenuse/Opposite Side
  • cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

Co-function Identities

  • sin (90°−x) = cos x
  • cos (90°−x) = sin x
  • tan (90°−x) = cot x
  • cot (90°−x) = tan x
  • sec (90°−x) = cosec x
  • cosec (90°−x) = sec x

Fundamental Trigonometric Identities

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1

Similar questions