Math, asked by 12ahujagitansh, 1 day ago

If x = sint and y = cospt, prove that

prove that

(1 -  {x}^{2})y_2 - xy_1 +  {p}^{2} y = 0

where symbols have usual meanings.​

Answers

Answered by mathdude500
35

\large\underline{\sf{Solution-}}

\rm \: x = sint

and

\rm \: y = cos \: pt

Now,

\rm \: x = sint \:  \:  \: \rm\implies \:t =  {sin}^{ - 1}x

Also,

\rm \: y = cos \: pt

\rm \: pt =  {cos}^{ - 1}y

On substituting the value of t from above, we get

\rm \: p  \: {sin}^{1}x=  {cos}^{ - 1}y

On differentiating both sides w. r. t. x, we get

\rm \: p  \: \dfrac{d}{dx}{sin}^{1}x= \dfrac{d}{dx} {cos}^{ - 1}y

\rm \: p \:  \times  \: \dfrac{1}{ \sqrt{1 -  {x}^{2} } }  =  - \dfrac{1}{ \sqrt{1 -  {y}^{2} } }\dfrac{dy}{dx}

can be further rewritten as

\rm \:  \dfrac{p}{ \sqrt{1 -  {x}^{2} } }  =  - \dfrac{1}{ \sqrt{1 -  {y}^{2} } }y_1

\rm \: y_1 \sqrt{1 -  {x}^{2} } =  - p \:  \sqrt{1 -  {y}^{2} }

On squaring both sides, we get

\rm \:  {y_1}^{2}(1 -  {x}^{2}) =  {p}^{2}(1 -  {y}^{2})

On differentiating both sides w. r. t. x, we get

\rm \:  \dfrac{d}{dx}{y_1}^{2}(1 -  {x}^{2}) =  \dfrac{d}{dx}{p}^{2}(1 -  {y}^{2})

We know,

\boxed{\tt{ \dfrac{d}{dx} \: uv \:  =  \: u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }} \\

So, using this result, we get

\rm \:  {y_1}^{2}\dfrac{d}{dx}(1 -  {x}^{2}) + (1 -  {x}^{2})\dfrac{d}{dx} {y_1}^{2} =  {p}^{2}(0 - 2yy_1) \\

\rm \:  {y_1}^{2}(0 - 2x) + (1 -  {x}^{2})(2y_1y_2) =  {p}^{2}( - 2yy_1) \\

\rm \:  {y_1}^{2}( - 2x) + (1 -  {x}^{2})(2y_1y_2) =  {p}^{2}( - 2yy_1) \\

\rm \:  2y_1( - xy_1 + (1 -  {x}^{2} )y_2) =  - 2 {p}^{2}yy_1 \\

\rm \:   - xy_1 + (1 -  {x}^{2} )y_2 =  - {p}^{2}y \\

\rm\implies \:\: (1 -  {x}^{2} )y_2 - xy_1  + {p}^{2}y = 0 \\

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used

\boxed{\tt{ \dfrac{d}{dx} {sin}^{ - 1}x =  \frac{1}{ \sqrt{1 -  {x}^{2} } } \: }} \\

\boxed{\tt{ \dfrac{d}{dx} {cos}^{ - 1}x =   -  \: \frac{1}{ \sqrt{1 -  {x}^{2} } } \: }} \\

\boxed{\tt{  \: \dfrac{d}{dx}k \:  =  \: 0 \: }} \\

\boxed{\tt{  \: \dfrac{d}{dx} {x}^{n}  \:  =  \: n {x}^{n - 1}  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by TheBestWriter
24

Solution:

Here,

x = sint

y = cospt

So,

x = sint

=> t = sin^-1x

On differentiating w.r.t.x, we get

p d/dx sin^-1x

= d/dx cos^-1y

= p × 1/1-x²

= - 1/√1-y² dy/dx

Now,

 \rm \leadsto \: y _{1 ^{2} }(1 -  {x}^{2} ) \\  \\  \leadsto \rm {p}^{2} (1 -  {y}^{2} ) \\  \\  \sf \: on \:  \: diffrentating \: w.r.t.x \:  \: we \:  \: get \\  \\  \implies \sf \:  y_{1}  \:^{2}  \:  \frac{d}{dx}  \: (1 -  {x}^{2} ) \:  +  \: (1 -  {x}^{2}) \:  \frac{d}{dx}   y_{1}  \:^{2}  = p ^{2} (0 - 2yy _{1} )

=> y₁²(0 - 2x) + (1 - x²) (y₁y₂) = (p²(0-2yy₁)

=> y₁²(0 - 2x) + (1 - x²)(2y₁y₂) = (p²(-2yy₁)

=> 2y₁( -2x) + ( 1 - x²) y₂) = -2p²(-2yy₁)

=> - xy₁ + (1 - x²) y₂ = - p²y

=> (1 - x²) y₂-xy₁ + p²y = 0

Similar questions