If x = sint and y = sinpt prove that : (1 - xsquare)d2y/dx2 - xdy/dx + psquarey = 0
Answers
Answered by
52
x = sin t, dx/dt = cos t = √(1-x²)
y = sin pt, dy/dt = p cos pt = p √(1-y²)
=> dy/dx = dx/dt ÷ dx/dt
= p cos(pt) / cos
t = p √(1-y²) / √(1-x²)
=> d²y/dx² = d/dx [dy/dx]
= p [ √(1-x²) * {-y/√(1-y²)} *
dy/dx - √(1-y²) {-x/√(1-x²) } ] / (1-x²)
= - p² y / (1-x²)
+ p x √(1-y²) / (1-x²)³/²
(substituting the value of dy/dx)...
LHS= (1-x²) d²y/dx² + x dy/dx + p² y
= [ - p² y + p x √(1-y²) /√(1-x²) ] + [ p
x √(1-y²) /√(1-x²) ] + p² y
= 0 as the terms cancel out.
Hence proved.
kvnmurty:
click on red heart thanks above pls
Answered by
17
x = sint and y = sinpt
t = sin^-1x and t = 1/psin^-1y
sin^-1x = 1/psin^-1y
differentiate wrt x
1/√( 1 -x²) = 1/P 1/√( 1 - y²) dy/dx
take square both sides
( 1 - y²) P² = (1 -x²)(dy/dx)²
again differentiate wrt x
( -2y)P²dy/dx = ( 1- x²)2dy/dx.d²y/dx² + (-2x)(xy/dx)²
-P²ydy/dx ={( 1 - x²)d²ydx -xdy/dx }dy/dx
-P²y = ( 1 - x²)d²y/dx² - xdy/dx
( 1 -x²)d²y/dx² -xdy/dx +P²y =0
hence proved
t = sin^-1x and t = 1/psin^-1y
sin^-1x = 1/psin^-1y
differentiate wrt x
1/√( 1 -x²) = 1/P 1/√( 1 - y²) dy/dx
take square both sides
( 1 - y²) P² = (1 -x²)(dy/dx)²
again differentiate wrt x
( -2y)P²dy/dx = ( 1- x²)2dy/dx.d²y/dx² + (-2x)(xy/dx)²
-P²ydy/dx ={( 1 - x²)d²ydx -xdy/dx }dy/dx
-P²y = ( 1 - x²)d²y/dx² - xdy/dx
( 1 -x²)d²y/dx² -xdy/dx +P²y =0
hence proved
Similar questions
Math,
8 months ago
Computer Science,
8 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Physics,
1 year ago
English,
1 year ago
Biology,
1 year ago