If x=sint y=sinmt prove that (1-x^2) d^2y/dx^2 +x dy/dx + m^2 y = 0.
Answers
Answered by
1
x = sin t, dx/dt = cos t = √(1-x²)
y = sin mt, dy/dt = m cos mt = m √(1-y²)
=> dy/dx = dx/dt ÷ dx/dt
= m cos(mt) / cos t = m √(1-y²) / √(1-x²)
=> d²y/dx² = d/dx [dy/dx]
= m [ √(1-x²) * {-y/√(1-y²)} * dy/dx - √(1-y²) {-x/√(1-x²) } ] / (1-x²)
= - m² y / (1-x²) + m x √(1-y²) / (1-x²)³/²
(substituting the value of dy/dx)...
LHS= (1-x²) d²y/dx² + x dy/dx + m² y
= [ - m² y + m x √(1-y²) /√(1-x²) ] + [ m x √(1-y²) /√(1-x²) ] + m² y
= 0 as the terms cancel out.
Hence proved.
y = sin mt, dy/dt = m cos mt = m √(1-y²)
=> dy/dx = dx/dt ÷ dx/dt
= m cos(mt) / cos t = m √(1-y²) / √(1-x²)
=> d²y/dx² = d/dx [dy/dx]
= m [ √(1-x²) * {-y/√(1-y²)} * dy/dx - √(1-y²) {-x/√(1-x²) } ] / (1-x²)
= - m² y / (1-x²) + m x √(1-y²) / (1-x²)³/²
(substituting the value of dy/dx)...
LHS= (1-x²) d²y/dx² + x dy/dx + m² y
= [ - m² y + m x √(1-y²) /√(1-x²) ] + [ m x √(1-y²) /√(1-x²) ] + m² y
= 0 as the terms cancel out.
Hence proved.
kvnmurty:
click on red heart thanks above pls
Similar questions