Math, asked by learner42, 12 days ago

If x = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and y= sqrt 3 + sqrt 2 sqrt 3 - sqrt 2 , then x ^ 2 + xy + y ^ 2 =

Answers

Answered by yashaswininamani4
17

Answer:

if it helps

Step-by-step explanation:

please follow army

Attachments:
Answered by Dhruv4886
19

If x = \frac{\sqrt{3} -\sqrt{2} }{\sqrt{3} + \sqrt{2} }  and  y = \frac{\sqrt{3} +\sqrt{2} }{\sqrt{3} -\sqrt{2} }  then the value of x² + xy + y² = 99

To find:

Given:

x = \frac{\sqrt{3} -\sqrt{2} }{\sqrt{3} + \sqrt{2} }  and  y = \frac{\sqrt{3} +\sqrt{2} }{\sqrt{3} -\sqrt{2} }  

To find:

Find the value of x² + xy + y²

Solution:

From Given data x = \frac{\sqrt{3} -\sqrt{2} }{\sqrt{3} + \sqrt{2} }  

To rationalize x, multiply and divide x with (√3-√2)

x = \frac{\sqrt{3} -\sqrt{2} }{\sqrt{3} + \sqrt{2} }\frac{(\sqrt{3} - \sqrt{2} )}{(\sqrt{3}- \sqrt{2}) }  

x= \frac{(\sqrt{3} -\sqrt{2} )^{2} }{(\sqrt{3})^{2}  - (\sqrt{2})^{2}  }

x= \frac{(\sqrt{3})^{2}  +(\sqrt{2} )^{2} - 2(\sqrt{3})(\sqrt{2})  }{(3 - 2) }    [  Use (a - b)² = a²+b² - 2ab ]

x =(3 +2 - 2(\sqrt{6})  }  

x =5- 2\sqrt{6}  }

Given  y = \frac{\sqrt{3} +\sqrt{2} }{\sqrt{3} -\sqrt{2} }  

To rationalize Y, multiply and divide x with (√3+√2)  

y = \frac{\sqrt{3} +\sqrt{2} }{\sqrt{3} -\sqrt{2} }\frac{(\sqrt{3} +\sqrt{2})}{(\sqrt{3} +\sqrt{2})}

y = \frac{(\sqrt{3} +\sqrt{2})^{2}  }{(\sqrt{3})^{2}  -(\sqrt{2})^{2}  }

y = \frac{(\sqrt{3})^{2}  +(\sqrt{2})^{2} +2(\sqrt{3} )(\sqrt{2})  }{(3  -2)  }

y =  {3  +2+2\sqrt{6}  }

y =  {5+2\sqrt{6}  }

Now calculate x² + xy + y² using above values

(5- 2\sqrt{6} )^{2} +(5- 2\sqrt{6}  )( {5+2\sqrt{6}  }) + ( {5+2\sqrt{6}})^{2}

⇒  25+24 - 20\sqrt{6}   + 25- 24 + 25+24 +20\sqrt{6}}

25+24 + 25+ 25

⇒ 99

Therefore, the value of x² + xy + y² = 99

 

#SPJ2

Similar questions