if x square - 1 is a factor of ax power 4 + bx cube + cx square + dx + e , show that a + c + e = 0 , b +d = 0
Answers
Answered by
172
^2 and^3 is square and cube
so lets start the question
x^2-1=0
x^2-1^2=0
(x+1)(x-1)=0
x+1=0
x=-1
x-1=0
x=1
p(x)=ax^4+bx^3+cx^2+dx+e
p(-1)=a(-1)^4+b(-1)^3+c(-1)^2+d(-1)+e
= a-b+c-d+e-------------(i)
p(1)=a(1)^4+b(1)^3+c(1)^2+d(1)+e
a+b+c+d+e--------------(ii)
add(1)&(2)
a-b+c-d+e+a+b+c+d+e
2a+2c+2e=0
2(a+c+e)=0
a+c+e=0/2
a+c+e=0
substract1&2
a-b+c-d+e-(a+b+c+d+e)
a-b+c-d+e-a-b-c-d-e
-2b-2d=0
-2(b+d)=0
b+d=0/-2
b+d=0
hence verified
so lets start the question
x^2-1=0
x^2-1^2=0
(x+1)(x-1)=0
x+1=0
x=-1
x-1=0
x=1
p(x)=ax^4+bx^3+cx^2+dx+e
p(-1)=a(-1)^4+b(-1)^3+c(-1)^2+d(-1)+e
= a-b+c-d+e-------------(i)
p(1)=a(1)^4+b(1)^3+c(1)^2+d(1)+e
a+b+c+d+e--------------(ii)
add(1)&(2)
a-b+c-d+e+a+b+c+d+e
2a+2c+2e=0
2(a+c+e)=0
a+c+e=0/2
a+c+e=0
substract1&2
a-b+c-d+e-(a+b+c+d+e)
a-b+c-d+e-a-b-c-d-e
-2b-2d=0
-2(b+d)=0
b+d=0/-2
b+d=0
hence verified
Answered by
156
Answer:
refer explanation for proof a + c + e = 0 and b +d = 0
Step-by-step explanation:
Given : is a factor of
we have to show a + c + e = 0 , b + d = 0
Since is a factor of then must satisfy the polynomial p(x).
Put
We get,
Thus, at x = 1 p(x) becomes,
P(1) = 0
............(1)
also, P(-1) = 0
............(2)
Adding (1) and (2) , we get,
a + b + c + d + e + a - b + c - d + e = 0
a + c + e + a + c + e = 0
2(a + c+ e) = 0
⇒ a + c + e = 0
Subtract (1) and (2) , we get,
a + b + c + d + e - a + b - c + d - e = 0
b + d + b + d = 0
2( b + d) = 0
⇒ b + d = 0
Hence, proved.
Similar questions