Math, asked by topper239, 10 months ago

if x square + 1 upon x square is equal to 62 find x cube + 1 upon x cube​

Answers

Answered by arpitaguha25
1

Answer:

x

3

+

x

3

1

=488

Step-by-step explanation:

We have,

x^{2}+\dfrac{1}{x^2}=62x

2

+

x

2

1

=62

To find, the value ofx^{3}+\dfrac{1}{x^3}=?x

3

+

x

3

1

=?

∴ (x+\dfrac{1}{x})^{2} =x^{2}+\dfrac{1}{x^2}+2(x+

x

1

)

2

=x

2

+

x

2

1

+2

⇒ (x+\dfrac{1}{x})^{2}=64(x+

x

1

)

2

=64

⇒ (x+\dfrac{1}{x})^{2}=8^{2}(x+

x

1

)

2

=8

2

⇒ x+\dfrac{1}{x}=8x+

x

1

=8

∴ (x+\dfrac{1}{x})^{3} =x^{3}+\dfrac{1}{x^3}+3.x.\dfrac{1}{x}(x+\dfrac{1}{x})(x+

x

1

)

3

=x

3

+

x

3

1

+3.x.

x

1

(x+

x

1

)

⇒ (x+\dfrac{1}{x})^{3} =x^{3}+\dfrac{1}{x^3}+3(x+\dfrac{1}{x})(x+

x

1

)

3

=x

3

+

x

3

1

+3(x+

x

1

)

⇒ x^{3}+\dfrac{1}{x^3}=(x+\dfrac{1}{x})^{3}-3(x+\dfrac{1}{x})x

3

+

x

3

1

=(x+

x

1

)

3

−3(x+

x

1

)

⇒ x^{3}+\dfrac{1}{x^3}=(8)^{3}-3(8)=512-24x

3

+

x

3

1

=(8)

3

−3(8)=512−24

⇒x^{3}+\dfrac{1}{x^3}=488x

3

+

x

3

1

=488

Hence, x^{3}+\dfrac{1}{x^3}=488x

3

+

x

3

1

=488

Answered by brainly7901
1

Answer:

232 or -280

Step-by-step explanation:

as (x+1/x)^2= x^2+ 1/x^2 + 2

putting 62 we get x+1/x = +8 and -8

we need to consider both values unless mentioned

now put the valu in

(x+1/x)^3 = x^3+ 1/x^3 +3(x+1/x)

for x+1/x =8

ans is 232

and for

x+1/x = -8

ans is -280

Similar questions