if X square + 1 upon x square is equal to 7 find the value of x cube + 1 / x cube
Answers
Answered by
70
Given
x^2 + 1/x^2 = 7
To Find
x^3 + 1/x^3 = ?
Solution
( x + 1/x )^2 = ( x )^2 + ( 1/x )^2 + 2 ( x )( 1/x )
( x + 1/x )^2 = x^2 + 1/x^2 + 2
( x + 1/x )^2 = 7 + 2
( x + 1/x )^2 = 9
x + 1/x = 3
( x + 1/x )^3 = ( x )^3 + ( 1/x )^3 + 3 ( x )( 1/x ) ( X + 1/x )
( 3 )^3 = x^3 + 1/x^3 + 3 ( 3 )
27 = x^3 + 1/x^3 + 9
x^3 + 1/x^3 = 18
x^2 + 1/x^2 = 7
To Find
x^3 + 1/x^3 = ?
Solution
( x + 1/x )^2 = ( x )^2 + ( 1/x )^2 + 2 ( x )( 1/x )
( x + 1/x )^2 = x^2 + 1/x^2 + 2
( x + 1/x )^2 = 7 + 2
( x + 1/x )^2 = 9
x + 1/x = 3
( x + 1/x )^3 = ( x )^3 + ( 1/x )^3 + 3 ( x )( 1/x ) ( X + 1/x )
( 3 )^3 = x^3 + 1/x^3 + 3 ( 3 )
27 = x^3 + 1/x^3 + 9
x^3 + 1/x^3 = 18
Answered by
93
Hey friend, Harish here.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Here is your answer
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Given that,
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
To Find,
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Solution,
Add, 2 on both the sides.
⇒
⇒ (Take square root on both the sides)
⇒ - (i)
Now cube on both sides in equation (i).
⇒
⇒
⇒
Now, Substitute the value of in th above equation.
⇒
⇒
⇒
____________________________________________________
Hope my answer is helpful to u.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Here is your answer
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Given that,
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
To Find,
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Solution,
Add, 2 on both the sides.
⇒
⇒ (Take square root on both the sides)
⇒ - (i)
Now cube on both sides in equation (i).
⇒
⇒
⇒
Now, Substitute the value of in th above equation.
⇒
⇒
⇒
____________________________________________________
Hope my answer is helpful to u.
Similar questions