Math, asked by sudhanvalm1221, 1 year ago

If x square+1/x square=66 find the value of x-1/x

Answers

Answered by rsafikaroselin
2

x^2 + 1/x^2 = (x-1/x)^2 + 2

= 66 = (x-1/x)^2 + 2

= 66-2 = (x-1/x)^2

= 64 = (x-1/x)^2

= root of 64 = (x-1/x)

= 8

therefore, (x-1/x) = 8

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

 \sf{ {x}^{2}  + \frac{1}{ {x}^{2} }   = 66} \\

 \bf \underline{To find-} \\

 \sf{the \: value \: of  :\: x -  \frac{1}{x}  = \:  ?} \\

 \bf \underline{Solution-} \\

  \sf {\bigg(x -  \frac{1}{x}  \bigg) ^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2}  }   - 2 \:  \:  \: \:  \:  \:    [ \because \: (a - b {)}^{2}  =  {a}^{2} +  {b}^{2}  - 2ab ]} \\  \\  = 66 - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \: \: \: \: \:\rm{ [ \because {x}^{2}   +  \frac{1}{ {x}^{2}} = 66 \:(Given)  ]  } \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \: \:= 64 \\

 \sf{ \therefore \:  \:  \:  \:  \:  \: x -  \frac{1}{x} =  \sqrt{64} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ± \: 8 \\

 \bf\underline{Hence,the \: value \: of :  \: x -  \frac{1}{x}  \: is  \: ± \: 8.} \\

Similar questions