Math, asked by bunny213251, 4 months ago

If x square + 1/x square = 9, find the value of x^4 + 1/x^4 ​

Attachments:

Answers

Answered by dibyangshughosh309
22

 \huge{ \underline{ \underline{ \ \color{magenta}{ \mathfrak{question}}}}}

 \tt5. \:  if \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 9 \: find \: the \: value \: of \:  {x}^{4}  +  \frac{1}{ {x}^{4} }

 \huge{ \red{ \underline{ \underline{ \mathfrak{ \color{orange}{answer}}}}}}

 \tt \to  {x}^{4}  +  \frac{1}{ {x}^{4} }  =  \blue{79}

\huge{ \color{aqua}{ \underbrace{ \underline{ \color{lime}{ \mathbb{✯꧁᭄⋆SoLuTiOn⋆᭄꧂✯ }}}}}}

 \tt \: given \: that \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 9

 \tt \:on \:  squaring \: both \: the \: sides \: we \: get

 \tt \to( {x}^{2}  +  \frac{1}{ {x}^{2} }  {)}^{2}  = {9}^{2}

 \tt \: we \: will \: use \:the \: formula \\  \tt (a + b {)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 \tt \to(x {}^{2}  {)}^{2}  + ( \frac{1}{ {x}^{2} }  {)}^{2}  + 2 \times   \cancel{{x}^{2}}  \times  \frac{1}{  \cancel{{x}^{2}} }  = 81

 \tt \to {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 81

 \tt \to {x}^{4}  +  \frac{1}{ {x}^{4} }  = 81 - 2

 \tt \to  {x}^{4}  +  \frac{1}{ {x}^{4} }  =  \red{79}

Similar questions