Math, asked by kamaksha75061, 1 year ago

If x square + 1/xsquare =66 ,find the value of x-1/x

Answers

Answered by yogesh1073
2

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 66

It can be written as,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 64 + 2

 {x}^{2}  +  \frac{1}{ {x}^{2} }   - 2 = 64

 {x }^{2}  +  \frac{1}{ {x}^{2} }   - 2 \times x \times  \frac{1}{x }  = 64

Now LHS is of the form

 {(a  -  b)}^{2}  =  {a}^{2}  +  {b}^{2} - 2ab

Therefore,

 {(x -  \frac{1}{x} )}^{2}  = 64

 {( x-  \frac{1}{x} )}^{2}  =  {8}^{2}

 x -  \frac{1}{x}  =  +  8 \: or \:  - 8

Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Solution-} \\

 \sf{ {x}^{2}  + \frac{1}{ {x}^{2} }   = 66} \\

 \bf \underline{To find-} \\

 \sf{the \: value \: of  :\: x -  \frac{1}{x}  = \:  ?} \\

 \bf \underline{Solution-} \\

  \sf {\bigg(x -  \frac{1}{x}  \bigg) ^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2}  }   - 2 \:  \:  \: \:  \:  \:    [ \because \: (a - b {)}^{2}  =  {a}^{2} +  {b}^{2}  - 2ab ]} \\  \\  = 66 - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \: \: \: \: \:\rm{ [ \because {x}^{2}   +  \frac{1}{ {x}^{2}} = 66 \:(Given)  ]  } \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \: \:= 64 \\

 \sf{ \therefore \:  \:  \:  \:  \:  \: x -  \frac{1}{x} =  \sqrt{64} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ± \: 8 \\

 \bf\underline{Hence,the \: value \: of :  \: x -  \frac{1}{x}  \: is  \: ± \: 8.} \\

Similar questions