Math, asked by vandanavirat22p7e8bf, 1 year ago

if x square - 5 x + 1 is equal to zero then find the value of x cube + 1 by x cube​

Answers

Answered by HimanshuAaradhya
22

x^2 - 5x + 1 = 0

x * x - 5x = 0-1 = -1

x - 4x = -1

3x = -1

x = -1/3

x^3 + 1/x^3

-1/3^3 + 1/-1/3^3

-1/9 + 1/-1/9

=> -1/9 -1/9 +1

=> -2/9 + 1

=> -2-9/9

=> -11/9

=> 1.22

Answered by pinquancaro
10

Answer:

x^3+\frac{1}{x^3}\approx 109    

Step-by-step explanation:

Given : If x^2-5x+1=0

To find : The value of x^3+\frac{1}{x^3} ?

Solution :

The quadratic equation x^2-5x+1=0 is solve by quadratic formula,

x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}            

Here, a=1 , b=-5, c=1

x=\frac{-(-5)\pm\sqrt{(-5)^2-4(1)(1)}}{2(1)}

x=\frac{5\pm\sqrt{25-4}}{2}

x=\frac{5\pm\sqrt{21}}{2}

x=\frac{5+\sqrt{21}}{2},\frac{5-\sqrt{21}}{2}

x=4.791,0.209

At x=4.791,

x^3+\frac{1}{x^3}=(4.791)^3+\frac{1}{(4.791)^3}

x^3+\frac{1}{x^3}=109.97+\frac{1}{109.97}

x^3+\frac{1}{x^3}=109.98

At x=0.209,

x^3+\frac{1}{x^3}=(0.209)^3+\frac{1}{(0.209)^3}

x^3+\frac{1}{x^3}=0.009129+\frac{1}{0.009129}

x^3+\frac{1}{x^3}=109.54

Similar questions