Math, asked by narmeenbeeda1859, 2 months ago

If x=square root 5 +2,find the value of x power 4+1upon xpower4

Answers

Answered by mathdude500
0

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{x =  \sqrt{5}  + 2}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{ {x}^{4} + \dfrac{1}{ {x}^{4} }  }  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Given

:  \implies  \sf \: x \:  =  \sqrt{5}  + 2

Consider

:  \implies  \: \dfrac{1}{x}  = \dfrac{1}{ \sqrt{5}  + 2}

:  \implies  \: \dfrac{1}{x}  = \dfrac{1}{ \sqrt{5}  + 2}  \times \dfrac{ \sqrt{5} - 2 }{ \sqrt{5} - 2 }

:  \implies  \: \dfrac{1}{x}  = \dfrac{ \sqrt{5} - 2 }{ 5  - 4}

:  \implies  \tt \:\dfrac{1}{x}  =  \sqrt{5}  - 2

:  \implies  \tt \: \boxed{ \red{x \:  + \dfrac{1}{x}  = 2 \sqrt{5} }}

● On squaring both sides, we get

:  \implies  \tt \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }  + 2 \times x \times \dfrac{1}{x}  = 20

:  \implies  \tt \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }  + 2   = 20

:  \implies  \tt \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }     = 20 - 2

:  \implies  \tt \:  {x}^{2}  + \dfrac{1}{ {x}^{2} }     = 18

● On squaring both sides we get

:  \implies  \tt \:  {x}^{4}  + \dfrac{1}{ {x}^{4} }  + 2  \times  {x}^{2}   \times \dfrac{1}{ {x}^{2} }  = 324

:  \implies  \tt \:  {x}^{4}  + \dfrac{1}{ {x}^{4} }  + 2   = 324

:  \implies  \tt \:  {x}^{4}  + \dfrac{1}{ {x}^{4} }    = 324 - 2

:  \implies   \large\boxed {\purple{ \tt \:  {x}^{4}  + \dfrac{1}{ {x}^{4} }    = 322}}

Similar questions