Math, asked by sumitrachoudhury2202, 6 months ago

if x takes on the values 0,1,2and3 with probabilities 1/125, 12/125, 48/125 and 64/125 E(x) and E (x²)​

Answers

Answered by cutepunjaban12
21

Answer:

The Random Variable X Takes On The Values 0,1,2,3 With Respective Probabilities 1/125, 12/125, 48/125, 64/125 Find E(X), E(X2

Answered by pulakmath007
0

\displaystyle \bf  E(x) = 2.4 \:  \: and \:  \: E( {x}^{2} ) =6.24

Given :

x takes on the values 0 , 1 , 2 and 3 with probabilities 1/125 , 12/125 , 48/125 and 64/125

To find :

The value of E(x) and E(x²)

Solution :

Step 1 of 2 :

Find the value of E(x)

\displaystyle \sf  E( {x}^{} )

\displaystyle \sf   =  \sum \:  {x}^{} p(x)

\displaystyle \sf   = \bigg( {0}^{} \times  \frac{1}{125}  \bigg) + \bigg( {1}^{} \times  \frac{12}{125}  \bigg) + \bigg( {2}^{} \times  \frac{48}{125}  \bigg) + \bigg( {3}^{} \times  \frac{64}{125}  \bigg)

\displaystyle \sf   =  0 + \frac{12}{125}  +  \frac{96}{125}  +  \frac{192}{125}

\displaystyle \sf   =   \frac{12 + 96 + 192}{125}

\displaystyle \sf   =   \frac{300}{125}

\displaystyle \sf   =  2.4

Step 2 of 2 :

Find the value of E(x²)

\displaystyle \sf  E( {x}^{2} )

\displaystyle \sf   =  \sum \:  {x}^{2} p(x)

\displaystyle \sf   = \bigg( {0}^{2} \times  \frac{1}{125}  \bigg) + \bigg( {1}^{2} \times  \frac{12}{125}  \bigg) + \bigg( {2}^{2} \times  \frac{48}{125}  \bigg) + \bigg( {3}^{2} \times  \frac{64}{125}  \bigg)

\displaystyle \sf   =  0 + \frac{12}{125}  +  \frac{192}{125}  +  \frac{576}{125}

\displaystyle \sf   =   \frac{12 + 192 + 576}{125}

\displaystyle \sf   =   \frac{780}{125}

\displaystyle \sf   =  6.24

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If the variance of the poissons distribution is 2,find the probability for r=1,2,3 and 4 from the recurrence relation of...

https://brainly.in/question/23494639

2. If random variables has Poisson distribution such that p(2) =p(3), then p(5) =

https://brainly.in/question/23859240

#SPJ3

Similar questions