Math, asked by mankirankaur666, 9 months ago

If x=tan(1/a .logy),show that (1+x^2) dy/dx=ay

Answers

Answered by pulakmath007
8

</p><p></p><p>\huge\boxed{\underline{\underline{\green{ Solution}}}} </p><p>

x = tan( \frac{1}{a}  \: logy \: )

 \implies \:  {tan}^{ - 1} x \:  =  \frac{ log(y) }{a}

Differentiating both sides with respect to x

 \frac{1}{1  + {x}^{2} }  =  \frac{1}{a}  \times  \frac{1}{y}  \frac{dy}{dx}

 \therefore \:  \: (1 +  {x}^{2} ) \frac{dy}{dx}  = ay

</p><p></p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Similar questions