If x=tan(1/a logy) Show that (1+x2)d2y/dx2 + (2x-a)dy/dx = 0
Answers
Answered by
223
HELLO DEAR,
GIVEN:-
x =![\bold{tan(\frac{1}{a}logy)} \bold{tan(\frac{1}{a}logy)}](https://tex.z-dn.net/?f=%5Cbold%7Btan%28%5Cfrac%7B1%7D%7Ba%7Dlogy%29%7D)
so, tan^{-1}x = 1/a logy
differentiating both with respect to x.
we get,
![\bold{\Rightarrow \frac{1}{1 + x^2} = \frac{1}{a} * \frac{1}{y} \frac{dy}{dx}} \bold{\Rightarrow \frac{1}{1 + x^2} = \frac{1}{a} * \frac{1}{y} \frac{dy}{dx}}](https://tex.z-dn.net/?f=%5Cbold%7B%5CRightarrow+%5Cfrac%7B1%7D%7B1+%2B+x%5E2%7D+%3D+%5Cfrac%7B1%7D%7Ba%7D+%2A+%5Cfrac%7B1%7D%7By%7D+%5Cfrac%7Bdy%7D%7Bdx%7D%7D)
![\bold{\Rightarrow \frac{a}{1 + x^2} = \frac{1}{y} \frac{dy}{dx}} \bold{\Rightarrow \frac{a}{1 + x^2} = \frac{1}{y} \frac{dy}{dx}}](https://tex.z-dn.net/?f=%5Cbold%7B%5CRightarrow+%5Cfrac%7Ba%7D%7B1+%2B+x%5E2%7D+%3D+%5Cfrac%7B1%7D%7By%7D+%5Cfrac%7Bdy%7D%7Bdx%7D%7D)
![\bold{\Rightarrow (1 + x^2)\frac{dy}{dx} = ay} \bold{\Rightarrow (1 + x^2)\frac{dy}{dx} = ay}](https://tex.z-dn.net/?f=%5Cbold%7B%5CRightarrow+%281+%2B+x%5E2%29%5Cfrac%7Bdy%7D%7Bdx%7D+%3D+ay%7D+)
again, differentiating with respect to x.
![\bold{\Rightarrow (1 + x^2)\frac{d^2y}{dx^2} + (2x)\frac{dy}{dx} = a\frac{dy}{dx}} \bold{\Rightarrow (1 + x^2)\frac{d^2y}{dx^2} + (2x)\frac{dy}{dx} = a\frac{dy}{dx}}](https://tex.z-dn.net/?f=%5Cbold%7B%5CRightarrow+%281+%2B+x%5E2%29%5Cfrac%7Bd%5E2y%7D%7Bdx%5E2%7D+%2B+%282x%29%5Cfrac%7Bdy%7D%7Bdx%7D+%3D+a%5Cfrac%7Bdy%7D%7Bdx%7D%7D)
![\bold{\Rightarrow (1 + x^2)\frac{d^2y}{dx^2} + (2x - a)\frac{dy}{dx} = 0} \bold{\Rightarrow (1 + x^2)\frac{d^2y}{dx^2} + (2x - a)\frac{dy}{dx} = 0}](https://tex.z-dn.net/?f=%5Cbold%7B%5CRightarrow+%281+%2B+x%5E2%29%5Cfrac%7Bd%5E2y%7D%7Bdx%5E2%7D+%2B+%282x+-+a%29%5Cfrac%7Bdy%7D%7Bdx%7D+%3D+0%7D)
![\bold{\Large{HENCE, \,\,PROVED}} \bold{\Large{HENCE, \,\,PROVED}}](https://tex.z-dn.net/?f=%5Cbold%7B%5CLarge%7BHENCE%2C+%5C%2C%5C%2CPROVED%7D%7D)
I HOPE ITS HELP YOU DEAR,
THANKS,
GIVEN:-
x =
so, tan^{-1}x = 1/a logy
differentiating both with respect to x.
we get,
again, differentiating with respect to x.
I HOPE ITS HELP YOU DEAR,
THANKS,
Similar questions