If x tan² 120° + 4cos2 150° = 9, then x is
Answers
Answered by
4
Answer:
-2
Step-by-step explanation:
tan² (∅)= [1+cos(2∅) ]/ [1−cos(2∅) ]
cos²(∅)= (1/2)[1+cos (2∅)]
so,
x[1+cos{2(120°)}]/[1-cos{2(120°)}] + (4)(1/2)[1+cos{2(150°)}] = 9
x[1.5/-.5]+(4)[1.5]=9
x(-3)+3=9
-3x=6
x=-2
Answered by
12
Answer:
2
Step-by-step explanation:
x tan^2 120 degrees +4 cos^2 150 degrees =9
x tan^2(180 degree - 60 degree)+4 cos^2(180 degree - 30 degree)=9
x(- tan^2 60 degree)+4(- cos^2 30 degree)=9
x(-root 3)^2 + 4(-root 3/2)^2=9
x(3)+4(3/4)=9
3x+3=9
3x=9-3
3x=6
x=6/3
x=2
Hope it is helpful to you.....
Similar questions