Math, asked by Rudranil420, 11 months ago

If x tan30° + y cot 60° = 0 and 2x-y tan45° = 1 then find the value of x and y.​

Answers

Answered by dorgan399
20

Step-by-step explanation:

x tan30° + y cot 60° = 0

TAN 30°=1/3

COT 60°=1/3

x tan30° + y cot 60° = 0

=>1/3 + y × 1/3 =0

=>x+y=0.......(i)

2x-y tan45°=1

TAN45°=1

=>2x-y×1=1

=>2x-y=1.........(ii)

solving both eqn

=>x+y=0.......(i)

=>2x-y=1.........(ii)

adding both eqn

2x+x+y-y=0+1

=>3x=1

x=1/3

y=0-x=(-1/3)

x=1/3

y=(-1/3)

Answered by ItsTogepi
10

\huge\underline{\boxed{\mathtt{\green{Given:}}}}

\sf{x \tan {30}^{0}  + y \cot {60}^{0}  = 0}

\sf{2x - y \tan {45}^{0}  = 1}

\huge\underline{\boxed{\mathtt{\red{ToFind:}}}}

  • The value of X and y.

\rule{300}{2}

\sf{x \tan {30}^{0}  + y \cot {60}^{0}  = 0}

\sf{\implies x. \frac{1}{ \sqrt{3} }  + y . \frac{1}{ \sqrt{3} }  = 0}

\sf{\implies  \frac{1}{ \sqrt{3} } (x + y) = 0}

\sf{\implies x + y = 0}--------(1)

\rule{300}{2}

\mathtt{Now,}

\sf{2x - y \tan {45}^{0}  = 1}

\sf{\implies 2x - y.1 = 1}

\sf{\implies 2 x - y = 1}------------(2)

\rule{300}{2}

\mathtt{Adding \: eq(1) \: and \: eq(2) \: we \: get,}

\sf{x + y + 2x - y = 0 + 1}

\sf{\implies 3x = 1}

\sf{\implies x =  \frac{1}{3}}

\rule{300}{2}

\mathtt{Putting \: the \: value \: of \: x \: in \: eq(1)we \: get}

\sf{x + y = 0}

 \sf{\implies \frac{1}{3}  + y = 0}

\sf{\implies y =  -  \frac{1}{3} }

\mathtt{Hence, \: the \: required \: value \: of \: x } \\ \mathtt{is \:  \frac{1}{3}  \: and \: y \: is \:  -  \frac{1}{3}. }

\rule{300}{2}

\huge\underline{\boxed{\mathtt{\blue{ThankYou}}}}

Similar questions