Math, asked by Rudranil420, 11 months ago

If x tan30° + y cot 60° = 0 and 2x-y tan45° = 1 then find the value of x and y.​

Answers

Answered by karannnn43
4

 \:  \:  \:  \:  \:  \: x \tan(30)  + y \cot(60)  = 0 \\  =  > x. \frac{1}{ \sqrt{3} }  + y. \frac{1}{ \sqrt{3} }  = 0 \\  =  >  \frac{1}{ \sqrt{3} } (x + y) = 0 \\  =  > (x + y) = 0.......(i)

Now,

 \:  \:  \:  \:  \:  \:  \: 2x - y \tan(45)  = 1 \\  =  > 2x - y \times 1 = 1 \\  =  > 2x - y = 1......(ii)

Adding equ. (i) and (ii)

 \:  \:  \:  \:  \:  \:  \:  \: 2x - y  + x + y = 1 \\  =  > 3x = 1 \\  =  > x =  \frac{1}{3}

Putting value of x in eq (i)

 \:  \:  \:  \:  \:  \:  \:  \:  \: x + y = 0 \\  =  > y = 0 - x \\  =  > y = 0 -  \frac{1}{3}  \\  =  > y =  \frac{ - 1}{3}

Answered by ItsTogepi
0

\huge\underline{\boxed{\mathtt{\red{Given:}}}}

\sf{x \tan {30}^{0}  + y \cot {60}^{0}  = 0}

\sf{2x - y \tan {45}^{0}  = 1}

\huge\underline{\boxed{\mathtt{\red{ToFind:}}}}

  • The value of X and y.

\rule{300}{2}

\sf{x \tan {30}^{0}  + y \cot {60}^{0}  = 0}

\sf{\implies x. \frac{1}{ \sqrt{3} }  + y . \frac{1}{ \sqrt{3} }  = 0}

\sf{\implies  \frac{1}{ \sqrt{3} } (x + y) = 0}

\sf{\implies x + y = 0}--------(1)

\rule{300}{2}

\mathtt{Now,}

\sf{\implies 2x - y \tan {45}^{0}  = 1}

\sf{\implies 2x - y.1 = 1}

\sf{\implies 2 x - y = 1}------------(2)

\rule{300}{2}

\mathtt{Adding \: eq(1) \: and \: eq(2) \: we \: get,}

\sf{x + y + 2x - y = 0 + 1}

\sf{\implies 3x = 1}

\sf{\implies x =  \frac{1}{3}}

\rule{300}{2}

\mathtt{Putting \: the \: value \: of \: x \: in \: eq(1)we \: get}

\sf{x + y = 0}

 \sf{\implies \frac{1}{3}  + y = 0}

\sf{\implies y =  -  \frac{1}{3} }

\mathtt{Hence, \: the \: required \: value \: of \: x } \\ \mathtt{is \:  \frac{1}{3}  \: and \: y \: is \:  -  \frac{1}{3}. }

\rule{300}{2}

\huge\underline{\boxed{\mathtt{\red{ThankYou}}}}

Similar questions