Math, asked by kushgarg22, 9 months ago

If x=
1  \div 3 + 2 \sqrt{2}

then find the value of
x - 1 \div x

Answers

Answered by Anonymous
3

Step-by-step explanation:

x =  \frac{1}{3 + 2 \sqrt{2} }  \\  \\  \\  =  > x   -   \frac{1}{x}  =  >  \frac{1}{3 + 2 \sqrt{2} }  -  \frac{1}{ \frac{1 }{ 3 + 2 \sqrt{2} } }  \\  \\  \\  =  >  \frac{1}{3 + 2 \sqrt{2} }  - 3 + 2 \sqrt{2}  \\  \\  \\  =  >  \frac{1 -  {(3 + 2 \sqrt{2)} }^{2} }{3 + 2 \sqrt{2} }  \\  \\  \\  =  >  \frac{1 - (9 + 8 + 12 \sqrt{2} )}{3 + 2 \sqrt{2} }  \\  \\  \\  =  >  \frac{1 - 17 - 12 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \\  =  >  \frac{ - 15 - 12 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \\  =  >  \frac{ - 15 - 1 2\times1.41 }{3 + 2 \times 1.41}  \\  \\  \\  =  >  \frac{ - 15 - 16.92}{3 + 2.82}  \\  \\  \\  =  >  \frac{ - 31.92}{5.82}  =  >  - 8.35

please mark me brainlist ✔️

Similar questions