Math, asked by sneha1136, 1 year ago

If x=
3 + 2 \sqrt{2}
Find
x {}^{2}  +     \frac{1}{x {}^{2} }


Answers

Answered by SRK1729
7

Step-by-step explanation:

x=3+2root2

x^+1/x^2 =?

now 1/x = 1/3+2root2

after rationalisation

1/x = 3-2root2

now we know , (x+1/x)^2= x^2+1/x^2+2

so putting values

(3+2root2+3-2root2)^2=x^2+1/x^2+2

(6)^2=x^2+1/x^2+2

so, x^2+1/x^2 = 36-2

x^2+1/x^2= 34

your answer is 34

Answered by Anonymous
4

 \sf{given \:  \: x = 3 + 2 \sqrt{2} }

 \sf{ \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} } }

 \sf{rationalise \: the \: denominator} \\  \implies \sf{ \frac{1}{x}  =  \frac{1}{3 + 2 \sqrt{2} } \times  \frac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }  }

 \implies \sf{ \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{ {3}^{2}   - {(2 \sqrt{2})}^{2}  } }

 \implies \sf{ \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{ 9   - 8 } }

 \implies \sf{ \frac{1}{x}  =  3 - 2 \sqrt{2} }

\sf{now}

 \sf{ x+  \frac{1}{ x }  =  3 + 2 \sqrt{2}  } +  3 - 2 \sqrt{2}

 \sf{ x+  \frac{1}{ x }  =  6}

squaring on both sides

 \implies \sf{{( x+  \frac{1}{ x } )}^{2}  =   {6}^{2} }

 \implies \sf{{{x}^{2} +  \frac{1}{  {x}^{2}   } } + 2  =   36}

 \implies \sf{{{x}^{2} +  \frac{1}{  {x}^{2}   } }   =   36 - 2}

 \fbox{\sf{{{x}^{2} +  \frac{1}{  {x}^{2}   } }   =   34}}

\huge\star{\sf\small{Hope\:this\:helps\:you}}\huge\star


dhvanit75: why
dhvanit75: for tqlk
dhvanit75: talk
dhvanit75: ohk
dhvanit75: bye
Similar questions