If X =
Show that :
Answers
Answered by
78
Answer:
Attachments:
Answered by
17
Given :-
- x = 3^(1/3) - 3^(-1/3)
To Prove :-
- 3x³ + 9x = 8 ?
Solution :-
→ x = 3^(1/3) - 3^(-1/3)
Cubing both sides we get,
→ x³ = [ 3^(1/3) - 3^(-1/3) ]³
Now, using (a - b)³ = a³ - b³ - 3ab(a - b) in RHS , we get,
→ x³ = {3^(1/3)}³ - {3^(-1/3)}³ - 3 * 3^(1/3) * 3^(-1/3) [ 3^(1/3) - 3^(-1/3) ]
Using (a^b)^c = (a)^(bc) and, a^b * a^c = a^(b + c)
→ x³ = (3)^(1/3 * 3) - (3)^(-1/3 * 3) - 3 * 3^( -1/3 + 1/3) * [ 3^(1/3) - 3^(-1/3) ]
→ x³ = 3 - 3^(-1) - 3 * 3^0 * [ 3^(1/3) - 3^(-1/3) ]
using a^(-b) = 1/a^b and a^0 = 1 , and putting [ 3^(1/3) - 3^(-1/3) ] = x
→ x³ = 3 - 1/3 - 3 ( x )
→ x³ = [ 3 - 1/3 - 3x]
_________________________
Putting value of x³ now, we get :-
→ 3x³ + 9x
→ 3[3 - 1/3 - 3x] + 9x
→ 9 - 1 - 9x + 9x
→ 8 (Hence, Proved).
___________________________
Similar questions