Math, asked by Saby123, 11 months ago

If X =
 {3}^{ \frac{1}{3} }  -  {3}^{ -  \frac{ 1}{3} }
Show that :

3 {x}^{3}   + 9x \:  = 8

Answers

Answered by Anonymous
78

Answer:

 \rm{heya \: mate} \\  \\  \rm{ \: refers \: in \: the \: attahment}

Attachments:
Answered by RvChaudharY50
17

Given :-

  • x = 3^(1/3) - 3^(-1/3)

To Prove :-

  • 3x³ + 9x = 8 ?

Solution :-

→ x = 3^(1/3) - 3^(-1/3)

Cubing both sides we get,

x³ = [ 3^(1/3) - 3^(-1/3) ]³

Now, using (a - b)³ = - - 3ab(a - b) in RHS , we get,

x³ = {3^(1/3)}³ - {3^(-1/3)}³ - 3 * 3^(1/3) * 3^(-1/3) [ 3^(1/3) - 3^(-1/3) ]

Using (a^b)^c = (a)^(bc) and, a^b * a^c = a^(b + c)

x³ = (3)^(1/3 * 3) - (3)^(-1/3 * 3) - 3 * 3^( -1/3 + 1/3) * [ 3^(1/3) - 3^(-1/3) ]

→ x³ = 3 - 3^(-1) - 3 * 3^0 * [ 3^(1/3) - 3^(-1/3) ]

using a^(-b) = 1/a^b and a^0 = 1 , and putting [ 3^(1/3) - 3^(-1/3) ] = x

x³ = 3 - 1/3 - 3 ( x )

→ x³ = [ 3 - 1/3 - 3x]

_________________________

Putting value of now, we get :-

3x³ + 9x

→ 3[3 - 1/3 - 3x] + 9x

→ 9 - 1 - 9x + 9x

→ 8 (Hence, Proved).

___________________________

Similar questions